Convex Set

Affine Set

Definition

一个集合满足任意不同两点, 且, 则这个集合是affine的

即, 如果任意两点连线表示的直线上的所有点都在这个set中, 那么这个set是affine set

这个定义可以扩展到多个点: 的affine combination where 也是属于affine set的.

Definition

  1. affine dimension: 一个affine hull的维度定义为affine dimension

  2. relative interior: 闭包仿射(closure affine C)的内部, 记作

    其中表示relative boundary

Convex Set

Definition

一个集合满足任意不同两点, 且, 则这个集合是convex的

即, 如果任意两点连线上的所有点都在这个set中, 那么这个set是convex set

注意与affine set区分, affine set要求整个直线都在这个set里面, 但是convex只要求连线线段在set中

Definition

convex hull:

Cones

Definition

  1. , 如果满足, 那么C是cone, 或者non-negative homogeneous(非负齐次)
  2. , 如果, 那么是convex cone
  3. 称为conic cone(锥包). 即所有点的conic combination的集合

Operation that Preserve Convexity

  1. Insertion 如果都是convex的, 那么也是convex的
  2. affine function 如果是affine的()
  3. perspective and linear-fractional function:
    • perspective function:
    • Linear-fractional function:

Convex Function

Definition

convex functino:

examples:

in :

  • ,
  • , or
  • Concave: , , for

in :

  • quadratic function: is concave if and only if
  • geometric mean: is concave on
  • is concave on
  • is concave on

in :

  • affine function: is concave and convex on
  • Logarithmic Determinant Function: is concave on
  • maximum eigenvalue function: is convex on

Definition

epigraph:

Restriction of a Convex Function to a Line

Theorem

let and is .

is convex if and only if is convex for

First and Second Order Condition

Gradient:

Hessian:

Definition

  • First order condition: 有convex的domain的可微函数, 当且仅当的时候是convex的
  • Second order condition: convex domain的二次可微的函数, 当且仅当的时候是convex的

Some Other Convexity

Quasi-Convexity

一个函数是quasi-convexity的, 当且仅当是convex的且sublevel set 对于任何都是convex的

Log-Convexity

Convexity w.r.t. Generalized Inequalities

如果是convex的且满足

那么称是K-convex的

Convex Problem

Standard form:

feasibility:

  • 如果一个点满足所有的constraints, 那么称这个点是feasible的. 否则是infeasible
  • 如果一个问题, 至少有一个点是feasible的, 那么称该问题为feasible的. 否则是infeasible

optimal:

  • 如果问题是infeasible的, 那么
  • 如果问题是无边界的(unbounded below), 那么

Stationary Point

Definition

如果, 那么称为stationary point

Theorem

  1. 如果一个stationary point , 对于其neighborhood , 满足, 那么是local minimization
  2. 如果一个stationary point , 有, 满足, 那么是global minimization
  3. 如果一个stationary point , 对于其neighborhood , 满足, 并且 那么称为Saddle point

Convex Optimization Problem

standard form:

其中, 都是convex的. 等式约束(equality constraints)都是affine

对于一个convex problem, 其local optimal就是global optimal.

Theorem

一个可行解(feasible point)是optimal的 当且仅当

Quasi-Convex Optimization Problem

standard form:

其中, Quasi-Convexity的, 都是convex的. 等式约束(equality constraints)都是affine

使用epigraph 表示:

e.g.: Assume is convex, is concave and , .

for , is convex in if and only if

Some Other Solver

LP(Linear Programming)

Convex Problem: affine的objective function and constraints.

QP(Quadratic Programming)

convex problem: assume , convex quadratic objective function and affine constraints

QCQP(Quadratically Constrained QP)

convex problem: assume , convex quadratic objective function and constraints

SOCP(Second-Order Cone Programming)

convex problem: linear objective and second-order cone constraints

Generalized Inequality Constraints

其中, 是convex objective function, K-Convex

Conic Form Problem

SDP(Semidefinite Problem)

convex problem: linear objective function and linear matrix inequality(LMI) constraints

注意到多个LMI可以写成一个LMI, 因此有:

Eigenvalue minimization:

\begin{matrix}\text{minimize}&\lambda_\max(\mathbf A(\mathbf x))\end{matrix}

其中, \lambda_\max指的是的最大的特征值, 因此有\lambda_\max(\mathbf A(\mathbf x))\leq t\Leftrightarrow\mathbf A(\mathbf x)\preceq t\mathbf I

因此, 可以转成等效SDP:

Lagrangian

定义Lagrangian方程为:

Lagrangian Dual Function

Theorem

下界:

拉格朗日对偶优化问题:

KKT Condition

primal feasibility

原始条件可行:

dual feasibility

对偶的Lagrangian multiplier非负:

complementary slackness

zero gradient for Lagrangian with respect to x