Convex Set
Affine Set
Definition
一个集合满足任意不同两点, 且, 则这个集合是affine的
即, 如果任意两点连线表示的直线上的所有点都在这个set中, 那么这个set是affine set
这个定义可以扩展到多个点: 的affine combination where 也是属于affine set的.
Definition
affine dimension: 一个affine hull的维度定义为affine dimension
relative interior: 闭包仿射(closure affine C)的内部, 记作
其中表示relative boundary
Convex Set
Definition
一个集合满足任意不同两点, 且, 则这个集合是convex的
即, 如果任意两点连线上的所有点都在这个set中, 那么这个set是convex set
注意与affine set区分, affine set要求整个直线都在这个set里面, 但是convex只要求连线线段在set中
Definition
convex hull:
Cones
Definition
- , 如果满足, 那么C是cone, 或者non-negative homogeneous(非负齐次)
- , 如果, 那么是convex cone
- 称为conic cone(锥包). 即所有点的conic combination的集合
Operation that Preserve Convexity
- Insertion 如果都是convex的, 那么也是convex的
- affine function 如果是affine的()
- perspective and linear-fractional function:
- perspective function:
- Linear-fractional function:
Convex Function
Definition
convex functino:
examples:
in :
- ,
- , or
- Concave: , , for
in :
- quadratic function: is concave if and only if
- geometric mean: is concave on
- is concave on
- is concave on
in :
- affine function: is concave and convex on
- Logarithmic Determinant Function: is concave on
- maximum eigenvalue function: is convex on
Definition
epigraph:
Restriction of a Convex Function to a Line
Theorem
let and is .
is convex if and only if is convex for
First and Second Order Condition
Gradient:
Hessian:
Definition
- First order condition: 有convex的domain的可微函数, 当且仅当的时候是convex的
- Second order condition: convex domain的二次可微的函数, 当且仅当的时候是convex的
Some Other Convexity
Quasi-Convexity
一个函数是quasi-convexity的, 当且仅当是convex的且sublevel set 对于任何都是convex的
Log-Convexity
Convexity w.r.t. Generalized Inequalities
如果是convex的且满足
那么称是K-convex的
Convex Problem
- 如果一个点满足所有的constraints, 那么称这个点是feasible的. 否则是infeasible
- 如果一个问题, 至少有一个点是feasible的, 那么称该问题为feasible的. 否则是infeasible
- 如果问题是infeasible的, 那么
- 如果问题是无边界的(unbounded below), 那么
Stationary Point
Definition
如果, 那么称为stationary point
Theorem
- 如果一个stationary point , 对于其neighborhood , 满足, 那么是local minimization
- 如果一个stationary point , 有, 满足, 那么是global minimization
- 如果一个stationary point , 对于其neighborhood , 满足, 并且 那么称为Saddle point
Convex Optimization Problem
standard form:
其中, 都是convex的. 等式约束(equality constraints)都是affine的
对于一个convex problem, 其local optimal就是global optimal.
Theorem
一个可行解(feasible point)是optimal的 当且仅当
Quasi-Convex Optimization Problem
standard form:
其中, 是Quasi-Convexity的, 都是convex的. 等式约束(equality constraints)都是affine的
将使用epigraph 表示:
e.g.: Assume is convex, is concave and , .
for , is convex in if and only if
Some Other Solver
LP(Linear Programming)
Convex Problem: affine的objective function and constraints.
QP(Quadratic Programming)
convex problem: assume , convex quadratic objective function and affine constraints
QCQP(Quadratically Constrained QP)
convex problem: assume , convex quadratic objective function and constraints
SOCP(Second-Order Cone Programming)
convex problem: linear objective and second-order cone constraints
- 如果是行向量, 那么会退化成LP(Linear Programming)
- 如果, 那么会退化成QCQP(Quadratically Constrained QP)
Generalized Inequality Constraints
其中, 是convex objective function, 是K-Convex的
Conic Form Problem
SDP(Semidefinite Problem)
convex problem: linear objective function and linear matrix inequality(LMI) constraints
注意到多个LMI可以写成一个LMI, 因此有:
- LP(Linear Programming) and equivalent SDP(Semidefinite Problem):
- SOCP(Second-Order Cone Programming) and equivalent SDP(Semidefinite Problem):
Eigenvalue minimization:
\begin{matrix}\text{minimize}&\lambda_\max(\mathbf A(\mathbf x))\end{matrix}其中, \lambda_\max指的是的最大的特征值, 因此有\lambda_\max(\mathbf A(\mathbf x))\leq t\Leftrightarrow\mathbf A(\mathbf x)\preceq t\mathbf I
因此, 可以转成等效SDP:
Lagrangian
定义Lagrangian方程为:
Lagrangian Dual Function
Theorem
下界:
拉格朗日对偶优化问题:
KKT Condition
primal feasibility
原始条件可行:
dual feasibility
对偶的Lagrangian multiplier非负:
complementary slackness
zero gradient for Lagrangian with respect to x