pi0: A Vision-Language- Action Flow Model for General Robot Control
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FAST: Efficient Action Tokenization for Vision-Language-Action Models

o [F]H:
o XfFaction chunk AN, £ chunk N Haction &)
R, R — 1 chunk A B4 A= % 5 2 FH [F] 1Y

action

o XFEE I ZE Hlocal optima

° ﬁ@ﬁ%
o B Hltoken
o FHDCTH

o TEMRURIP)RRAYELAE [ AT E]/‘Jtraining efficiency, T
HERMFZESE M action/NH LT

High-
Frequency

=
e
e
k&

FAST Action
tokenization

Robot Data ‘ 10

i

a
W AW

N

r A

Vision-Language-Action Model

~ oA

~ oA

¥

N

A~

“fold the shirt”

Comparing Action Tokenizers across

Control Frequencies

Data Control Frequency

B FAST [ OpenVLA-style

Score




FAST: Efficient Action Tokenization for Vision-Language-Action Models

Frequency components Sparse frequency matrix

-----

Encoding

e FAST:
e Normalize
e DCT

* quantize
 BPE tokenize



pi0.5: a Vision- Language ACUOH Model with Open-World Generalization

Ak 7K H pio

Multimodal Data

Subtask Commands

S h

Close the =

Object Detection

%, Vision-Language-Action Policy
l—blhabot Action

High-Level Low-Level Action Expert

ﬂE‘J b
u Instruction

'

Deploy out-of-the-box in new homes

-

_ Robot Action Data

In-the-wild Mobile Robot

b

Shirt in basker Hoke bed

In-the-wild Static Robot

Fold linen

In-Lab Static Robot

W
Fold laundry

Sactp table

General Robot Data

s
@ q ¥
g m

43 BY, 1 high-level ) subtask instruction EA Zlow-level ] action expert



pi0.5: a Vision-Language-Action Model with Open-World Generalization
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Real-Time Execution of Action Chunking Flow Policies
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Real-Time Execution of Action Chunking Flow Policies
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Real-Time Execution of Action Chunking Flow Policies
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Real-Time Execution of Action Chunking Flow Policies
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