
RoCo: Dialectic Multi-Robot Collaboration with

Large Language Models

Zhao Mandi1,2, Shreeya Jain1, Shuran Song1,2

Abstract— We propose a novel approach to multi-robot

collaboration that harnesses the power of pre-trained large

language models (LLMs) for both high-level communication

and low-level path planning. Robots are equipped with LLMs

to discuss and collectively reason task strategies. They generate

sub-task plans and task space waypoint paths, which are

used by a multi-arm motion planner to accelerate trajectory

planning. We also provide feedback from the environment,

such as collision checking, and prompt the LLM agents to

improve their plan and waypoints in-context. For evaluation,

we introduce RoCoBench, a 6-task benchmark covering a wide

range of multi-robot collaboration scenarios, accompanied by

a text-only dataset that evaluates LLMs’ agent representation

and reasoning capability. We experimentally demonstrate the

effectiveness of our approach — it achieves high success rates

across all tasks in RoCoBench and adapts to variations in task

semantics. Our dialog setup offers high interpretability and

flexibility — in real world experiments, we show RoCo easily

incorporates human-in-the-loop, where a user can communicate

and collaborate with a robot agent to complete tasks together.

I. INTRODUCTION

Multi-robot systems are intriguing for their promise of
enhancing task productivity, but are faced with various chal-
lenges. For robots to effectively split and allocate the work, it
requires high-level understanding of a task, and consideration
of each robot’s capabilities such as reach range or payload.
Another challenge lies in low-level motion planning: as the
configuration space grows with the number of robots, finding
collision-free motion plans becomes exponentially difficult.
Finally, traditional multi-robot systems typically require task-
specific engineering, hence compromise generalization: with
much of the task structures pre-defined, these systems are
incapable of adapting to new scenarios or variations in a
task. In this work, we propose RoCo, a zero-shot multi-robot
collaboration method to address the above challenges. Our
approach includes three key components:
• Dialogue-style task-coordination: To facilitate informa-

tion exchange and task reasoning, we let robots ‘talk’
among themselves by delegating each robot to an LLM
agent in a dialog, which allows robots to discuss the task in
natural language, with high interpretability for supervision.

• Feedback-improved Sub-task Plan Generated by

LLMs: The multi-agent dialog ends with a sub-task plan
for each agent (e.g. pick up object). We provide a set of
environment validations and feedback (e.g. IK failures or
collision) to the LLM agents until a valid plan is proposed.

1Columbia University in the City of New York
2Stanford University
Project Webpage: https://project-roco.github.io
Correspondence to: mandi@stanford.edu

• LLM-informed Motion-Planning in Joint Space: From
the validated sub-task plan, we extract goal configurations
in the robots’ joint space, and use a centralized RRT-
sampler to plan motion trajectories. We explore a less-
studied capability of LLM: 3D spatial reasoning. Given
the start, goal, and obstacle locations in task space, we
show LLMs can generate waypoint paths that incorporate
high-level task semantics and environmental constraints,
and significantly reduce the motion planner’s sample com-
plexity.
We next introduce RoCoBench, a benchmark with 6

multi-robot manipulation tasks, which we use to experimen-
tally demonstrate the effectiveness of RoCo: by leveraging
the common-sense knowledge captured by large language
models (LLMs), RoCo is flexible in handling a variety of
collaboration scenarios without any task-specific training.

In summary, we propose a novel approach to multi-robot
collaboration, supported by two technical contributions: 1)
An LLM-based multi-robot framework (RoCo) that is flexi-
ble in handling a wide variety of tasks with improved task-
level coordination and action-level motion planning; 2) A
new benchmark (RoCoBench) for multi-robot manipulation
to systematically evaluate these capabilities. It includes a
suite of tasks that are designed to examine the flexibility
and generality of the algorithm in handling different task
semantics (e.g., sequential or concurrent), different levels
of workspace overlaps, and varying agent capabilities (e.g.,
reach range and end-effector types) and embodiment (e.g.,
6DoF UR5, 7DoF Franka, 20DoF Humanoid).

II. PRELIMINARIES
Task Assumption. We consider a cooperative multi-agent

task environment with N robot agents, a finite time horizon
T , full observation space O. Each agent with index n has
observation space ⌦n ⇢ O. Agents may have asymmetric ob-
servation spaces and capabilities, which stresses the need for
communication. We manually define description functions f
that translate task semantics and observations at a time-step t
into natural language prompts: lnt = fn(gn, ot), ot 2 ⌦n. We
also define parsing functions that map LLM outputs (e.g. text
string “PICK object”) to the corresponding sub-task, which
can be described by one or more gripper goal configurations.

Multi-arm Path Planning. Let X 2 Rd denote the joint
configuration space of all N robot arms and Xob be the
obstacle region in the configuration space, then collision-
free space Xfree = X\Xob. Given an initial condition
xinit 2 Xfree, a goal region xgoal 2 Xfree, the problem
of multi-arm motion planning deals with finding an optimal

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 286

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
10

85
5

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Multi-Robot Collaboration

Fig. 1: We propose RoCo, a unified approach for multi-robot collaboration that leverages LLMs for both high-level task
coordination and low-level motion planning. Left: we demonstrate its utility on RoCoBench, a benchmark we introduce that
includes a diverse set of challenges in collaboration task scenarios. Right: in our real-world experiments, we show RoCo can
be adapted for human-robot collaboration, where a human and a robot each has limited access to the workspace and must
coordinate to succeed the task

�⇤ : [0, 1]! X that satisfies: �⇤(0) = xinit, �⇤(1) 2 xgoal.
We assume the resulting �⇤ is used by the robot arms’
position-based joint controllers to execute in open-loop.

III. MULTI-ROBOT COLLABORATION WITH LLMS

We introduce RoCo, a novel method for multi-robot col-
laboration that leverages LLMs for robot communication and
motion planning. The three key components in our method
are illustrated in Fig. 2 and described below:

A. Multi-Agent Dialog via LLMs

We assume multi-agent task environments with asymmet-
ric observation space and skill capabilities, which necessi-
tates communication in order to coordinate meaningfully. We
leverage pre-trained LLMs to facilitate this communication:
specifically, before each environment interaction, we set up
one round of dialog where each robot is delegated to an
LLM agent, which receives agent-specific information and
responds strictly according to its role. For each agent’s LLM
prompt, we use a shared overall structure with content that
varies with each robot’s individual status. The prompt is
composed of 6 key components, as described below. See
Appendix XI for further details and a concrete prompt
example.

B. LLM-Generated Sub-task Plan

Once a round of dialog ends, the last speaking agent
summarizes a ‘sub-task plan’, where each agent gets one
sub-task (e.g. pick up an object) and optionally a path
of 3D waypoints in the task space. This sub-task plan is
first passed through a set of validations before going into
execution. If any of the checks fail, the feedback is appended
to each agent’s prompt and another round of dialog begins.
The validations are conducted in the order described below,
and terminates at the first failed check (e.g. a plan must

pass the parsing check before checking for task and agent
constraints):

1) Text Parsing ensures the plan follows desired format and
contains all required keywords

2) Task Constraints checks whether each action complies
with the task and agent constraints

3) IK checks whether each robot arm’s target pose is feasible
via inverse kinematics

4) Collision Checking checks if the IK-solved arm join
configurations cause collision

5) Valid Waypoints optionally, if a task requires path plan-
ning, each intermediate waypoint must be IK-solvable and
collision-free, and all steps should be evenly spaced

The agents are allowed to re-plan until reaching a maximum
number of attempts, after which the current round ends with-
out any execution and the next round begins. The episode is
considered failed if the task is not completed within a finite
number of rounds.

C. LLM-informed Motion Planning in Joint Space

Once a sub-task plan passes all validations, we use Inverse
Kinematics (IK) to produce the goal configuration jointly
over all robot arms, and optionally, each step of the task
space waypoint paths produces an intermediate goal configu-
ration. The goal configuration(s) are passed to an RRT-based
multi-arm motion planner that jointly plans over all robot
arms, and outputs motion trajectories for each robot, which
gets executed in the environment. Note that, in contrast to
our assumption on decentralized high-level task planning, we
use centralized collision-checking and planning for the multi-
arm motion planner, because geometry-level information of
an environment can be more easily gathered and planned
over.

287

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

§3.3§3.2§3.1

I am Alice, I have picked up
banana. I can [proposal]

[Collision]: at step … [IK]: …

I am Bob, I have the bread…
Let’s [proposal]

Alice’s LLM

You are Alice,
pack grocery with Bob…
[Task Context]
- Previously … [History]
- You can … [Capability]
- Respond …
[Dialog Instruction]
- You see …
[Env. Observation]

Your response:

Bob’s LLM

Sounds good, let’s proceed:
[plan summary]

…
 Alice [subtask] [task space waypoint]

Bob [subtask] [task space waypoint]
Alice [joint space trajectory]
Bob [joint space trajectory]

Fig. 2: RoCo consists of three main components: 1) Multi-agent dialog via LLMs: each robot is equipped with an LLM
that ‘talks’ on its behalf, enabling a discussion of task strategy. 2) LLM-Generated Sub-task Plan: the dialog ends with a
proposal of sub-task plan, including optionally a path of task space waypoints, and environment feedback on invalid plans
are provided for the agents to improve. 3) Multi-arm motion planning: A validated sub-task plan then produces goal
configurations for the robot arms, which are used by a centralized multi-arm motion planner that outputs trajectories for
each robot.

Sweep
Floor

Pack
Grocery

Move
Rope

Arrange
Cabinet

Make
Sandwich

Sort
Cubes

Task Parallel Parallel Parallel Seq Seq Seq

Observation Asym. Shared Shared Asym. Asym. Shared

Workspace Med Med High High Low Low

TABLE I: Overview of the key properties designed in RoCoBench tasks.
Task Decomposition (1st row): whether sub-tasks can be completed in
parallel or sequentially; Observation space (2nd row): whether all agents
receive the same information of task status; Workspace Overlap (3rd row):
proximity between robots during execution.

IV. ROCOBENCH : A BENCHMARK FOR MULTI-ROBOT
COLLABORATION

RoCoBench is a suite of 6 multi-robot collaboration tasks
in a tabletop manipulation setting. The tasks involve common
household objects that LLMs easily understand, and span
a repertoire of collaboration scenarios that require differ-
ent robot communication and coordination behaviors. See
Appendix X for detailed documentation on the benchmark.
Below we describe three key properties that define each task
(also see Table I for a summary):
1) Task decomposition: whether a task can be decomposed

into sub-parts that can be completed in parallel or in
certain order. Three tasks in RoCoBench have a sequential
nature (e.g. Make Sandwich requires food items to be
stacked in correct order), while the other three tasks can
be executed in parallel (e.g. objects in Pack Grocery can
be put into bin in any order).

2) Observation space: how much of the task and environ-
ment information each robot agent receives. Three tasks
provide shared observation of the task workspace, while
the other three have a more asymmetric setup and robots
must inquire each other to exchange knowledge.

3) Workspace overlap: proximity between operating robots;

we rank each task from low, medium or high, where
higher overlap calls for more careful low-level coordi-
nation (e.g. Move Rope requires manipulating the same
object together).

V. EXPERIMENTS

Overview. We design a series of experiments using Ro-
CoBench to validate our approach. In Section V-A, we
evaluate the task performance of RoCo compared to an
oracle LLM-planner that receives oracle task information,
and ablate on different components of the dialog prompting
in RoCo. Section V-B shows empirically the benefits of
LLM-proposed 3D waypoints in multi-arm motion planning.
Section V-C contains qualitative results that demonstrate the
flexibility and adaptability of RoCo. Additional experiment
results, such as failure analysis, are provided in Appendix
XII.

A. Main Results on RoCoBench

Experiment Setup. GPT-4 [32] was used for all our
results. We empirically compare our method (denoted as
‘Dialog’) to an oracle LLM-planner, i.e. ‘Central Plan’,
which receives full environment observation and knowledge
about all robots’ capabilities and plans for all robots at once.
We deem this planner ‘oracle’ because it does not need to
address the information asymmetry like the individual dialog
agents in our method.

We also evaluate two ablations on the prompt components
of RoCo: the first removes dialog and action history from
past rounds, i.e. ‘Dialog w/o History’. Second removes
environment feedback, i.e. ‘Dialog w/o Feedback’, where
a failed action plan is discarded and agents are prompted
to continue discussion without detailed failure reasons. To
offset the lack of re-plan rounds, each episode is given twice
the budget of episode length.

288

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Pack
Grocery

Arrange
Cabinet

Sweep
Floor

Make
Sandwich

Sort
Cubes

Move
Rope

Central Plan
(oracle)

Success 0.82 ± 0.06 0.90 ± 0.07 1.00 ± 0.00 0.96 ± 0.04 0.70 ± 0.10 0.50 ± 0.11
step, replan 11.1, 3.9 4.0, 2.7 8.4, 2.0 8.8, 1.2 8.6, 2.6 2.3, 3.9

Dialog w/o
History

Success 0.48 ± 0.11 1.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.12 0.73 ± 0.11 0.65 ± 0.11
step, replan 9.2, 3.1 4.2, 1.4 N/A, 1.0 9.6, 1.8 5.8, 1.4 3.7, 3.1

Dialog w/o
Feedback

Success 0.35 ± 0.10 0.70 ± 0.10 0.95 ± 0.05 0.35 ± 0.11 0.53 ± 0.13 0.45 ± 0.11
step, replan 18.0, 1.0 5.9, 1.0 7.6, 1.0 12.6, 1.0 4.9, 1.0 3.4, 1.0

Dialog
(ours)

Success 0.44 ± 0.06 0.75 ± 0.10 0.95 ± 0.05 0.80 ± 0.08 0.93 ± 0.06 0.65 ± 0.11
step, replan 9.9, 3.5 4.7, 2.0 7.1, 1.0 10.2, 1.7 4.9, 1.3 2.5, 3.1

TABLE II: Evaluation results on RoCoBench. We report averaged success rates " over 20 runs per task, the average number
of steps in successful runs # , and average number of re-plan attempts used across all runs # .

Evaluation Metric. Provided with a finite number of
rounds per episode and a maximum number of re-plan
attempts per round, the task performance is evaluated with
three metrics: 1) task success rate within the finite rounds;
2) number of environment steps the agents took to succeed
an episode, which measures the efficiency of the robots’
strategy; 3) average number of re-plan attempts at each round
before an environment action is executed – this reflects the
agents’ ability to understand and use environment feedback
to improve their plans. Overall, a method is considered better
if the task success rate is higher, it takes fewer environment
steps, and requires fewer number of re-plans.

Result Analysis. The evaluation results are reported in
Table II. We make the following remarks:

1) Comparison to centralized planner: With the ora-
cle global information, the centralized planner out-performs
dialog agents on 4 out of 6 tasks; however, results on the
remaining 2 tasks suggest the shorter, agent-specific dialog
prompts are better at representing the agents’ individual
interests and result in a more effective task strategy than
when the centralized planner trying to satisfy all agents’
constraints at once.

2) Takeaway from ablation results: When history in-
formation or plan feedback rounds are removed, the overall
performance drops (with the exception of some individual
tasks). In contrary to the assumption that LLMs might fail
to efficiently process prompts with long context length, the
LLM-powered dialog agents are capable of reasoning over
the entire input prompt and utilize it to plan actions.

3) Centralized planner is better at utilizing waypoint

feedback: We observe that, on Pack Grocery, the oracle
planner shows better capability at collision-free waypoint
planning. This suggests, on numerical 3D path outputs,
centralized processing is better for allowing LLMs to in-
corporate feedback and improve on individual coordinate
steps. A valuable line of future work lies in improving the
spatial reasoning ability of LLM-powered agents under the
decentralized dialog setting.

B. Effect of LLM-proposed 3D Waypoints
We demonstrate the utility of LLM-proposed task space

waypoints using two tasks that were designed to have high
workspace overlap, i.e. Pack Grocery and Move Rope, which

Object Init. Task Order

Human
Correction

Success 9/10 8/10
Step 5.3 5.5

Imperfect
Human

Success 7/10 6/10
Step 5.6 5.2

TABLE III: Real world experiment results. We report number
of successes and average number of steps in sucessful runs.

require both picking and placing to complete the task. For
comparison, we define a hard-coded waypoint path that
performs top-down pick or place, i.e. always moving the
gripper over a certain height atop an object before picking
it up, and lifting an object up to a height above the table
before moving and placing. We single-out one-step pick or
place snapshots, and run multi-arm motion planning using
the compared waypoints under a maximum of 300 second
planning time budget. As shown in Fig. 4, LLM-proposed
waypoints show no clear benefits for picking sub-tasks, but
significantly accelerate planning for placing, where collisions
are more likely to happen between the arms and the desktop
objects.

C. Zero-shot Adaptation to Task Variations
Leveraging the zero- and few-shot ability of LLMs,

RoCo demonstrates strong adaptation ability to varying
task semantics, which traditionally would require modi-
fication or re-programming of a system, e.g. fine-tuning
a learning-based policy. We use Make Sandwich task in
RoCoBench and showcase 3 main variation categories (see
Figure 3 for an overview):
1. Object Initialization: Initial locations of the food items
are randomized, and we show the dialog agents’ reasoning
is robust to this variation.
2. Task Goal: Agents must stack food items in the correct
order given by the sandwich recipe, and coordinate sub-task
strategies accordingly.
3. Robot Capability: Agents are able to exchange informa-
tion on items that are within their respective reach in order
to coordinate their action plans.

D. Real-world Experiments: Human-Robot Collaboration
Task Setup: A human user and a UR5E arm stand on

opposite sides of the table. The overall task goal is to move

289

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Please complete
the sandwich. I will
wait

Understood. I will
put bread slice on
the cucumber

Since ham is already
on tomato, I will
pick up cheese

Sounds good. I will
wait this round

I don’t have beef
patty, can you check
your side?

I have cucumber, I
will put it on the
sandwich

1

2

3

3

Yes. I can pick it up
I will pick up cheese
on my side

Bread slice is not
on my side, I will
wait for Dave to
pick it up

Since I can
reach beef
patty, I will put
it on cheese

Fig. 3: RoCo demonstrates strong adaptation ability to variations in task semantics. We use Make Sandwich task in
RoCoBench to showcase three variation categories: 1) object initialization, i.e. randomized food items’ locations on the
table; 2) task goals, i.e. robots must change behavior according to different sandwich recipes; 3) agent capability, e.g. agents
can only pick food items that are within their reach range.

Fig. 4: We demonstrate the utility of LLM-proposed way-
points via comparison with two alternatives: a linear way-
point path that interpolates between start and goal; ‘Hard-
code’, a pre-defined waypoint path that always performs top-
down pick or place.

cubes into the wooden bin. The human is only capable of
picking up cubes from inside the plastic cups and placing
them on the table, while the robot can pick up cubes from
the table and place them into the wooden bin.

Experiment Setup: We run RoCo with the modification
that only the robot agent is controlled by GPT-4, and engages
in the dialog with the human user. For perception, we use
a pre-trained object detection model, OWL-ViT [30], to
generate scene description from top-down RGB-D camera
images. We evaluate 2 main task variation categories: 1) ob-
ject initialization, i.e. initial block locations are randomized
for each run (Fig. 5.1); 2) task order specification, where the
agents are asked to follow a fixed order to move the blocks
(Fig. 5.2). We also evaluate two types of human behaviors:
1) an oracle human that corrects mistakes in the OWL-ViT-
guided scene descriptions and the robot’s responses; 2) an
imperfect human that provides no feedback to those errors.

Evaluation Results We evaluate a total of 40 runs, divided
into 10 runs for each variation. In Table III, we report task
success rate within the finite rounds, and number of steps
the agents took to succeed an episode. We remark that task
performance is primarily bottle-necked by incorrect object
detection from OWL-ViT, which leads to either an incorrect
object being picked up and resulting in failure or no object

being picked up and resulting in higher steps. See Appendix
XII-C for further details on the real

VI. RELATED WORK

LLMs for Robotics.

An initial line of prior work uses LLMs to select skill
primitives and complete robotic tasks, such as SayCan [1],
Inner Monologue [15], which, similarly to ours, uses en-
vironment feedback to in-context improve planning. Later
work leverages the code-generation abilities of LLMs to
generate robot policies in code format, such as CaP [24],
ProgGPT [37] and Demo2Code [40]; or longer programs
for robot execution such as TidyBot [41] and Instruct2Act
[14]. Related to our use of motion-planner, prior work
such as Text2Motion [26], AutoTAMP [4] and LLM-GROP
[8], [47] studies combining LLMs with traditional Task
and Motion Planning (TAMP). Other work explores using
LLMs to facilitate human-robot collaboration [6], to design
rewards for reinforcement learning (RL) [21], and for real-
time motion-planning control in robotic tasks [45]. While
prior work uses single-robot setups and single-thread LLM
planning, we consider multi-robot settings that can achieve
more complex tasks, and use dialog prompting for task
reasoning and coordination.

Multi-modal Pre-training for Robotics. LLMs’ lack of
perception ability bottlenecks its combination with robotic
applications. One solution is to pre-train new models with
both vision, language and large-scale robot data: the multi-
modal pre-trained PALM-E [11] achieves both perception
and task planning with a single model; Interactive Language
[29] and DIAL [43] builds a large dataset of language-
annotated robot trajectories for training generalizable imi-
tation policies. Another solution is to introduce other pre-
trained models, mainly vision-language models (VLMs) such
as CLIP [34]). In works such as Socratic Models [46],
Matcha [48], and [20], LLMs are used to repeatedly query
and synthesize information from other models to improve
reasoning about the environment. While most use zero-shot
LLMs and VLMs, works such as CogLoop [17] also explores
fine-tuning adaptation layers to better bridge different frozen
models. Our work takes advantage of simulation to extract
perceptual information, and our real world experiments fol-

290

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Alice, can you move green
cube from red cup to table?

Sure, Bob. I will pick green
cube and place it [...].

I will pick blue block from table
and place it in wooden bin.

[...], I will wait this round.

[Robot Bob]

[Human Alice]

wooden bin

green cup

red block

green cube

blue cup

purple cup

yellow cube

wooden bin

yellow cup

blue block

strawberry toy

green cup

purple cup

red block

Alice, I see green cube on the
table. I will now place it in the
wooden bin. [...]

Sounds good. You can now move
green cube

Alice, can you move strawberry
toy and red block from their
respective cups to the table? I will
[...]

Sure, I will [...]

B1
A1

wooden bin

pear toy
blue block

yellow cup

red cup

green cube

Alice, now that blue and yellow
blocks are in wooden bin, can you
move red block to the table?

Sure, Bob. I will pick red block
and place it [...].

Alice, I will now pick up red
block from the table and place it
in wooden bin. We have
successfully completed the task.

C1

Fig. 5: Real world experiments: collaborative block sorting between a robot and a human, with varying task semantics. We
test two variation categories: 1) object initialization, i.e. the object locations are randomized for each episode 2) task order
specification, i.e. agents must follow the specified order to move blocks.

low prior work [23], [37], [41] in using pre-trained object
detection models [30] to generate scene description.

Dialogue, Debate, and Role-play LLMs. Outside of
robotics, LLMs have been shown to possess the capability
of representing agentic intentions [2] and behaviors, which
enables multi-agent interactions in simulated environments
such as text-based games [36], [3] and social sandbox [33],
[22], [27]. Recent work also shows a dialog or debate
style prompting can improve LLMs’ performance on human
alignment [16] and a broad range of goal-oriented tasks [31],
[25], [12]. While prior work focuses more on understanding
LLM behaviors or improve solution to a single question, our
setup requires planning separate actions for each agent, thus
adding to the complexity of discussion and the difficulty in
achieving consensus.

Multi-Robot Collaboration and Motion Planning. Re-
search on multi-robot manipulation has a long line of history
[19]. A first cluster of work studies the low-level problem
of finding collision-free motion trajectories. Sampling-based
methods are a popular approach [18], where various algorith-
mic improvements have been proposed [9]. Recent work also
explored learning-based methods [13] as alternative. While
our tasks are mainly set in static scenes, much work has
also studied more challenging scenarios that require more
complex low-level control, such as involving dynamic objects
[35] or closed-chain kinematics [44], [42]. A second cluster
of work focuses more on high-level planning to allocate and
coordinate sub-tasks, which our work is more relevant to.
While most prior work tailor their systems to a small set
of tasks, such as furniture assembly [10], we highlight the
generality of our approach to the variety of tasks it enables
in few-shot fashion.

VII. ROCOBENCH-TEXT: MULTI-AGENT
REPRESENTATION AND REASONING DATASET

In addition to our main experimental results, we curate a
text-based dataset, RoCoBench-Text, to evaluate an LLM’s
agent representation and task reasoning ability. This dataset

aligns LLM with desirable capabilities in multi-agent collab-
oration, without requiring robotic environment interaction.
It builds on data from our evaluation on RoCoBench, and
contains a series of additional questions that are more open-
ended and go beyond simply finding the next best action
plan. We provide detailed descriptions on the construction
of this text-based dataset, and report experimental results for
evaluating popular large language models on our dataset. Due
to space limitation, we yield the majority of this section to
Appendix XIII

VIII. CONCLUSION

We present RoCo, a new framework for multi-robot col-
laboration that leverages large language models (LLMs) for
robot coordination and planning. We introduce RoCoBench,
a 6-task benchmark for multi-robot manipulation to be open-
sourced to the broader research community. We empirically
demonstrate the generality of our approach and many de-
sirable properties such as few-shot adaptation to varying
task semantics, while identifying limitations and room for
improvement. Our work falls in line with recent literature
that explores harnessing the power of LLMs for robotic
applications, and points to many exciting opportunities for
future research in this direction.

IX. APPENDIX

Please refer to our project website for the full appendix:
https://project-roco.github.io/roco-icra-appendix.pdf

ACKNOWLEDGMENT

This work was supported in part by NSF Award #2143601,
#2037101, and #2132519. We would like to thank Google
for the UR5 robot hardware. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

291

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho,
J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and
A. Zeng, “Do as i can, not as i say: Grounding language in robotic
affordances,” 2022.

[2] J. Andreas, “Language models as agent models,” arXiv preprint
arXiv:2212.01681, 2022.

[3] K. Chalamalasetti, J. Götze, S. Hakimov, B. Madureira, P. Sadler,
and D. Schlangen, “clembench: Using game play to evaluate chat-
optimized language models as conversational agents,” 2023.

[4] Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan, “Autotamp:
Autoregressive task and motion planning with llms as translators and
checkers,” arXiv preprint arXiv:2306.06531, 2023.

[5] M. M. Contributors, “MuJoCo Menagerie: A collection of high-
quality simulation models for MuJoCo,” 2022. [Online]. Available:
http://github.com/deepmind/mujoco menagerie

[6] Y. Cui, S. Karamcheti, R. Palleti, N. Shivakumar, P. Liang, and
D. Sadigh, “” no, to the right”–online language corrections for robotic
manipulation via shared autonomy,” arXiv preprint arXiv:2301.02555,
2023.

[7] S. Dasari, A. Gupta, and V. Kumar, “Learning dexterous manipulation
from exemplar object trajectories and pre-grasps,” in IEEE Interna-
tional Conference on Robotics and Automation 2023, 2023.

[8] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion
planning with large language models for object rearrangement,” arXiv
preprint arXiv:2303.06247, 2023.

[9] A. Dobson and K. E. Bekris, “Planning representations and algorithms
for prehensile multi-arm manipulation,” in 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2015, pp. 6381–6386.

[10] M. Dogar, A. Spielberg, S. Baker, and D. Rus, “Multi-robot grasp plan-
ning for sequential assembly operations,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 193–200.

[11] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu, et al., “Palm-e: An embodied
multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.

[12] Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch, “Improv-
ing factuality and reasoning in language models through multiagent
debate,” 2023.

[13] H. Ha, J. Xu, and S. Song, “Learning a decentralized multi-arm motion
planner,” in Conference on Robotic Learning (CoRL), 2020.

[14] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li, “Instruct2act:
Mapping multi-modality instructions to robotic actions with large
language model,” arXiv preprint arXiv:2305.11176, 2023.

[15] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. R. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown, T. Jack-
son, L. Luu, S. Levine, K. Hausman, and B. Ichter, “Inner monologue:
Embodied reasoning through planning with language models,” in
Conference on Robot Learning, 2022.

[16] G. Irving, P. Christiano, and D. Amodei, “Ai safety via debate,” 2018.
[17] C. Jin, W. Tan, J. Yang, B. Liu, R. Song, L. Wang, and J. Fu,

“Alphablock: Embodied finetuning for vision-language reasoning in
robot manipulation,” 2023.

[18] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” 2011.

[19] Y. Koga and J.-C. Latombe, “On multi-arm manipulation planning,”
Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pp. 945–952 vol.2, 1994.

[20] M. Kwon, H. Hu, V. Myers, S. Karamcheti, A. Dragan, and
D. Sadigh, “Toward grounded social reasoning,” arXiv preprint
arXiv:2306.08651, 2023.

[21] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh, “Reward design with
language models,” arXiv preprint arXiv:2303.00001, 2023.

[22] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem,
“Camel: Communicative agents for ”mind” exploration of large scale
language model society,” ArXiv, vol. abs/2303.17760, 2023.

[23] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” arXiv preprint arXiv:2209.07753, 2022.

[24] ——, “Code as policis: Language model programs for embodied
control,” in arXiv preprint arXiv:2209.07753, 2022.

[25] T. Liang, Z. He, W. Jiao, X. Wang, Y. Wang, R. Wang, Y. Yang, Z. Tu,
and S. Shi, “Encouraging divergent thinking in large language models
through multi-agent debate,” ArXiv, vol. abs/2305.19118, 2023.

[26] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023.

[27] R. Liu, R. Yang, C. Jia, G. Zhang, D. Zhou, A. M. Dai, D. Yang, and
S. Vosoughi, “Training socially aligned language models in simulated
human society,” 2023.

[28] A. LLC. (2023) Introducing claude. [Online]. Available: https:
//www.anthropic.com/index/introducing-claude

[29] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” arXiv preprint arXiv:2210.06407, 2022.

[30] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple open-vocabulary
object detection with vision transformers,” 2022.

[31] V. Nair, E. Schumacher, G. Tso, and A. Kannan, “Dera: Enhanc-
ing large language model completions with dialog-enabled resolving
agents,” arXiv preprint arXiv:2303.17071, 2023.

[32] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
[33] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and

M. S. Bernstein, “Generative agents: Interactive simulacra of human
behavior,” 2023.

[34] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[35] S. S. M. Salehian, N. Figueroa, and A. Billard, “Coordinated multi-
arm motion planning: Reaching for moving objects in the face of
uncertainty.” in Robotics: Science and Systems, 2016.

[36] D. Schlangen, “Dialogue games for benchmarking language under-
standing: Motivation, taxonomy, strategy,” 2023.

[37] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situ-
ated robot task plans using large language models,” arXiv preprint
arXiv:2209.11302, 2022.

[38] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[39] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel,
T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, “dm control: Software
and tasks for continuous control,” Software Impacts, vol. 6, p. 100022,
2020.

[40] H. Wang, G. Gonzalez-Pumariega, Y. Sharma, and S. Choudhury,
“Demo2code: From summarizing demonstrations to synthesizing code
via extended chain-of-thought,” arXiv preprint arXiv:2305.16744,
2023.

[41] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song,
J. Bohg, S. Rusinkiewicz, and T. Funkhouser, “Tidybot: Personal-
ized robot assistance with large language models,” arXiv preprint
arXiv:2305.05658, 2023.

[42] Z. Xian, P. Lertkultanon, and Q.-C. Pham, “Closed-chain manipulation
of large objects by multi-arm robotic systems,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 1832–1839, 2017.

[43] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Haus-
man, S. Levine, and J. Tompson, “Robotic skill acquisition via
instruction augmentation with vision-language models,” arXiv preprint
arXiv:2211.11736, 2022.

[44] J. Yakey, S. LaValle, and L. Kavraki, “Randomized path planning
for linkages with closed kinematic chains,” Robotics and Automation,
IEEE Transactions on, vol. 17, pp. 951 – 958, 01 2002.

[45] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[46] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke,
and P. Florence, “Socratic models: Composing zero-shot multimodal
reasoning with language,” 2022.

[47] X. Zhang, Y. Zhu, Y. Ding, Y. Zhu, P. Stone, and S. Zhang, “Visually
grounded task and motion planning for mobile manipulation,” in 2022

292

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 1925–1931.

[48] X. Zhao, M. Li, C. Weber, M. B. Hafez, and S. Wermter, “Chat
with the environment: Interactive multimodal perception using large
language models,” arXiv preprint arXiv:2303.08268, 2023.

293

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

APPENDIX
X. ROCOBENCH

A. Overview
RoCoBench is built with MuJoCo [38] physics engine.

The authors would like to thank the various related open-
source efforts that greatly assisted the development of Ro-
CoBench tasks: DMControl [39], Menagerie [5], and Mu-
JoCo object assets from [7]. The sections below provide a
detailed documentation for each of the 6 simulated collabo-
ration tasks.

B. Task: Sweep Floor
Task Description. 2 Robots bring a dustpan and a broom

to opposite sides of each cube to sweep it up, then the robot
holding dustpan dumps cubes into a trash bin.

Agent Capability. Two robots stand on opposite sides of
the table:
1) UR5E with robotiq gripper (‘Alice’): holds a dustpan
2) Franka Panda (‘Bob’): holds a broom
Observation Space. 1) cube locations: a. on table; b. inside
dustpan; c. inside trash bin; 2) robot status: 3D gripper
locations

Available Robot Skills. 1) MOVE [target]: target can only
be a cube; 2) SWEEP [target]: moves the groom so it pushes
the target into dustpan; 3) WAIT; 4) DUMP: dump dustpan
over the top of trash bin.

C. Task: Make Sandwich
Task Description. 2 Robots make a sandwich together,

each having access to a different set of ingredients. They
must select the required items and take turns to stack them
in the correct order.

Agent Capability. Two robots stand on opposite sides of
the table:

Observation Space 1) the robot’s own gripper state (either
empty or holding an object); 2) food items on the robot’s own
side of the table and on the cutting board.

Available Robot Skills. 1) PICK [object]; 2) PUT [object]
on [target]; WAIT

D. Task: Sort Cubes
Task Description. 3 Robots sort 3 cubes onto their corre-

sponding panels. The robots must stay within their respective
reach range, and help each other to move a cube closer.

Agent Capability. Three robots each responsible for one
area on the table
1) UR5E with robotiq gripper (‘Alice’): must put blue square

on panel2, can only reach: panel1, panel2, panel3.
2) Franka Panda (‘Bob’): must put pink polygon on panel4,

can only reach: panel3, panel4, panel5.
3) UR5E with suction gripper (‘Chad’): must put yellow

trapezoid on panel6, can only reach: panel5, panel6,
panel7.

Observation Space 1) the robot’s own goal, 2) locations of
each cube.

Available Robot Skills. 1) PICK [object] PLACE [pan-
elX]; 2) WAIT

E. Task: Pack Grocery
Task Description. 2 Robots pack a set of grocery items

from the table into a bin. The objects are in close proximity
and robots must coordinate their paths to avoid collision.

Agent Capability. Two robots on opposite sides of table
1) UR5E with robotiq gripper (‘Alice’): can pick and place

any object on the table
2) Franka Panda (‘Bob’): can pick and place any object on

the table
Observation Space 1) robots’ gripper locations, 2) locations
of each object, 3) locations of all slots in the bin.

Available Robot Skills. (must include task-space way-
points) 1) PICK [object] PATH [path]; 2) PLACE [object]
[target] PATH [path]

F. Task: Move Rope
Task Description. 2 robots lift a rope together over a

wall and place it into a groove. They must coordinate their
grippers to avoid collision.

Agent Capability. Two robots on opposite sides of table
1) UR5E with robotiq gripper (‘Alice’): can pick and place

any end of the rope within its reach
2) Franka Panda (‘Bob’): can pick and place any end of the

rope within its reach
Observation Space 1) robots’ gripper locations, 2) lo-

cations of rope’s front and end back ends; 3) locations of
corners of the obstacle wall; 4) locations of left and right
ends of the groove slot.

Available Robot Skills. (must include task-space way-
points) 1) PICK [object] PATH [path]; 2) PLACE [object]
[target] PATH [path]

G. Task: Arrange Cabinet
Task Description. 3 robots, two of them each hold one

side of the cabinet door open, while the third robot takes the
cups out and place them onto the correct coasters.

Agent Capability. Three robots, one on left side of the
table, two on right side of table
1) UR5E with robotiq gripper (‘Alice’): stands on left side,

can only reach left cabinet door
2) Franka Panda (‘Bob’): : stands on right side, can only

reach right cabinet door
3) UR5E with suction gripper (‘Chad’):: stands on right side,

can reach right cabinet door and cups and mugs inside
the cabinet.

Observation Space 1) locations cabinet door handles; 2)
each robot’s reachable objects, unaware of other robot’s reach
range.

Available Robot Skills. 1) PICK [object]; 2) OPEN [one
side of door handle]; 3) WAIT; 3) PLACE [object] [target]

XI. DETAILS ON LLM PROMPTING

We describe our proposed method of multi-agent dialog
in Algorithm 1: during each call to PromptDialogs, each
agent speaks at least once before reaching an acton plan; and
after each call to GiveFeedback, the proposed plan is passed

294

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

through a set of validation check and optionally results in a
text feedback that’s used in the next round of dialog; the
finalized plan is used by MotionPlanner to produce robot
motion trajectories for execution in the environment.

To produce each agent response in a dialog, we use
a separate query call to the LLM with an agent-specific
prompt. The prompt provides information regarding the
agent’s capability, the overall task objective, past history,
plan feedback, and environment observation. As a concrete
example, we provide in the text box below the LLM prompt
for one agent at the second time-step during one evaluation
run of the Sort Cube task (some texts are omitted for
readability)

Algorithm 1 Multi-agent dialog for collaboration

Require: agent u1, ..., uN , task horizon T ;
Require: max number of re-plans K, max number of dialog

per round M ,
Require: history buffer H; feedback buffer F

t 0
o t env.reset()
H .empty()
while t < T do

F .empty()
while len(F)< K do

dialog, plan PromptDialogs(H, F, o t, un)
plan-valid, feedback GiveFeedback(plan)
if plan-valid then

final-plan parsed-plan
break

end if

F .append(feedback)
end while

if plan-valid then

� t MotionPlanner(o t, final-plan)
o t+ 1, r t+ 1 env.step(� t)
if r t+ 1 > 0 then

break

end if

end if

H .append(dialog)
t t+ 1

end while

1. Agent Capability
[Action Options]
1) PICK [object name] PLACE [location] 2) WAIT
Only PICK an object if your gripper is empty. Target [location] for
PLACE should be panel or a bin.
[Action Output Instruction]
You must first output ’EXECUTE ’, then give **exactly** one action
per robot [omitted: rest of format instruction]
2. Round History
[History]
== Round#0 ==
[Chat History]
[Alice]: [...]
[Bob]: Hello Alice and Chad, I am Bob. [omitted: rest of dialog history]
[Executed Action]
Alice: PICK pink polygon PLACE panel3
Bob: PICK yellow trapezoid PLACE panel5
Chad: PICK blue square PLACE panel7
== Current Round ==
3. Task Context
7 panels on the table, ordered left to right: panel1,...,panel7. They form
a straight assembly line, panel1 is closed to panel2 and farthest from
panel7. You are robot Alice in front of panel2. You are collaborating
with Bob, Chad to sort cubes into their target panels. The task is NOT
done until all three cubes are sorted.
4. Current Observation
At current round:
blue square is on panel7
pink polygon is on panel3
yellow trapezoid is on panel5
Your goal is to place blue square on panel2, but you can only reach
panel1, panel2, panel3 [omitted: rest of observation description]
5. Communication Instruction
When you respond, tell others about your goal and all constraints.[omitted:
rest of communication instruction]
[Previous Chat]
[Alice]: [omitted: rest of previous dialog in current round]
6. Plan Feedback
[Environment Feedback]: - Previous Plan:
NAME Alice ACTION WAIT
NAME Bob ACTION PICK pink polygon PLACE panel4
NAME Chad ACTION PICK blue square PLACE panel3
- Goal Step: Reachability failed: Out of reach: Chad

You are Alice, your response is:
[...] seems that Chad cannot reach the blue square on panel7.[...]

XII. ADDITIONAL EXPERIMENT RESULTS

A. Failure Analysis on RoCoBench
We provide example failure scenarios observed in the

agent dialog and environment interaction.
Factual Errors in Dialog. We observe that when one

LLM-generated agent makes a mistake, it could sometimes
cause subsequent dialog to build on the wrong reasoning.
See an example below: one agent (Alice) wrongfully
decided the task is complete, and other agents repeat this
wrong claim and choose to wait for multiple rounds while

295

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Timing breakdown during evaluation runs on Ro-
CoBench. We run 10 episodes of Sweep Cubes task and
up to 10 environment steps. 8 out of 10 episodes ended
successfully within the given time budget

the task is, in fact, not finished.

[Alice]: [...] we have successfully completed our task. [...], let’s
wait for further instructions.
[Bob]: I agree that we have successfully completed our task. Great
teamwork, everyone! Let’s wait [...]
[Chad]: I concur that we have accomplished our goal. Excellent
teamwork! Let’s wait [...].

Errors in Motion Trajectory Execution Due to the
open-loop nature of the execution, small errors in a motion
trajectory could lead to unexpected errors, e.g. knocking of
an object by accident.

B. Timing Breakdown
In this section, we aim to provide a better sense of time

cost requirement for running RoCo on an example task
(i.e. Sweep Cubes). We ran 10 additional episodes with
maximum 5 re-plans and 10 environment steps per episode,
which results in 8 out of 10 successful episodes. During
each evaluation run, we record the timing per each GPT-
4 querying, and the motion planning time for each sub-
task plan (including inverse kinematics calculation, collision-
checking time, and joint multi-arm RRT sampling time). The
average time across all 10 episodes is reported in Figure 6.
We remark the LLM-querying bottlenecks the timing much
more so than motion planning time, which is mainly a result
of requiring multiple agent exchanges before an action plan
is proposed. More specifically, the evaluations average 7.1
steps to either succeed or reach time-out of an episode,
whereas on average each episode queries GPT-4 43.8 times in
total. However, this time cost can potentially be significantly
reduced via better accessibility to the OpenAI API services.

C. Real World Experiment Setup
The robot agent is a 6DoF UR5E arm with suction

gripper, and dialog is enabled by querying a GPT-4
model to respond as agent ‘Bob’, who is discussing
with a human collaborator ‘Alice’. The human user
provides text input to engage in the dialog, and arranges
cubes on the same tabletop. For perception, we use
top-down RGB-D image from an Azure Kinect sensor.

See the text below for an example of the robot’s prompt:
==== System Prompt ====
[Action Options]
1) PICK <obj> PLACE <target>: robot Bob must decide which
block to PICK and where to PLACE. To complete the task, Bob
must PLACE all blocks in the wooden bin.
2) WAIT: robot Bob can choose to do nothing, and wait for
human Alice to move blocks from inside cups to the table.

[Action Output Instruction]
First output ‘EXECUTE
’, then give exactly one ACTION for the robot.
Example#1: ‘EXECUTE
NAME Bob ACTION PICK green cube PLACE wooden bin
’ Example#2: ‘EXECUTE
NAME Bob ACTION WAIT
’

You are a robot called Bob, and you are collaborating
with human Alice to move blocks from inside cups to a wooden
bin.
You cannot pick blocks when they are inside cups, but can pick
blocks when they are on the table. Alice must help you by
moving blocks from inside cups to the table.
You must WAIT for Alice to move blocks from inside cups to
the table, then you can PICK blocks from the table and PLACE
them in the wooden bin.
[mention task order specification]
Talk with Alice to coordinate and decide what to do.

At the current round:
[object descriptions from observation]
Think step-by-step about the task and Alice’s response.
Improve your plans if given [Environment Feedback].
Propose exactly one action for yourself at the current round,
select from [Action Options].
End your response by either: 1) output PROCEED, if the plans
require further discussion; 2) If everyone has made proposals and
got approved, output the final plan, must strictly follow [Action
Output Instruction]!

==== User Prompt ====
You are Bob, your response is:
response from GPT-4:
EXECUTE
NAME Bob ACTION ...

XIII. MULTI-AGENT REPRESENTATION AND REASONING
DATASET

A. Dataset Overview

This dataset contains yes/no, multiple-choice or short
question-answering questions, spanning a range of different
reasoning abilities:
Self-knowledge evaluates how well the agent establishes
its identity under a given task context, divided into two
categories: 1) understanding an agent’s own capability (e.g.
which objects/area are not reachable); 2) memory retrieval,

296

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

i.e. inferring information from past dialog and actions.
Communication Skills evaluates an agent’s ability to ef-
fectively exchange information and drive a discussion into
an agreeable plan. The questions ask an LLM to 1) choose
appropriate response to other agents’ questions; 2) choose
appropriate inquiries to other agents.
Adaptation evaluates adaptation to unexpected situations
that were not specified in context. We use a subset of
RoCoBench tasks to design unexpected occurrences, either
regarding task state (e.g. a missing object) or a response
from another agent, and ask an LLM agent to choose the
best response. See below for an example question: two agents
make a sandwich together; one agent is informed of a broken
gripper and must infer that the sandwich can actually be
completed without any item from its side of the table.

B. Example Questions

1) Self-Knowledge Question-Answering:

• Agent Capability. This category contains 57 questions,
based on Sort Cubes task from RoCoBench. By asking
an LLM to explain an agent’s own capability under
the given task constraints, these questions evaluate how
well the LLM represents and establishes the identity of
individual agents.
- Context (system prompt):
7 panels on the table, ordered left to right: panel1,...,panel7. They
form a straight assembly line, panel1 is closed to panel2 and farthest
from panel7.
You are robot Alice in front of panel2. You are collaborating with
Bob, Chad to sort cubes into their target panels. The task is NOT
done until all three cubes are sorted.
At current round:
blue square is on panel5
pink polygon is on panel1
yellow trapezoid is on panel3
Your goal is to place blue square on panel2, but you can only reach
panel1, panel2, panel3: this means you can only pick cubes from
these panels, and can only place cubes on these panels.
Never forget you are Alice! Never forget you can only reach panel1,
panel2, panel3!
- Question (user prompt):
You are Alice. List all panels that are out of your reach. Think step-
by-step. Answer with a list of panel numbers, e.g. [1, 2] means you
can’t reach panel 1 and 2.
- Solution:
panels [4,5,6,7]

• Memory Retrieval. This category contains 44 total
questions, based on Make Sandwich and Sweep Floor
tasks from RoCoBench. By providing a history of agent
dialog and environment actions and asking an LLM to
reason about an agent’s past, the questions evaluates
how well the LLM performs memory retrieval and
reasoning for individual agents.

- Context (system prompt):
[History]
Round#0:
[Chat History] [Chad]: ... [Dave]:... [Chad]: [Executed Action]...
Round#1:
......
- Current Round
You are a robot Chad, collaborating with Dave to make a vege-
tarian sandwich [......] You can see these food items are on your
reachable side: ...
- Question (user prompt) You are Chad. Based on your [Chat
History] with Dave and [Executed Action] from previous rounds
in [History], what food items were initially on Dave’s side of the
table? Only list items that Dave explicitly told you about and Dave
actually picked up. Don’t list items that you are unsure about. Output
the item names as a list. Think step-by-step.
- Solution:
bread slice1

2) Effective Communication:

• Inquiry. This category contains 41 multiple-choice
questions, based on Arrange Cabinet task from Ro-
CoBench. The questions ask an LLM to speak as an
agent and choose the most appropriate inquiry to seek
information that helps their task reasoning.
- Context (system prompt):
You are Bob, collaborating with Alice, Chad to pick a mug
and a cup out of cabinet, and place them on correct coasters.
Both left and right cabinet doors should be OPENed and
held open, while anything inside can be PICKed. You must
coordinate to complete the task.
At current round: left door is closed, right door is closed,
mug is inside cabinet; cup is inside cabinet;
Alice’s gripper is holding nothing,
Your gripper is holding nothing,
Chad’s gripper is holding nothing,
Never forget you are Bob! Never forget you can only reach
right door handle!
- Question (user prompt):
You are thinking about picking right door handle. Who and
what should you ask to confirm this action? Think step-by-
step, then choose exactly one option from below.
[A] tell others about this plan because you are free and right
door handle is within your reach.
[B] ask if Alice and Chad can reach right door handle
because it’s not within your reach.
[C] ask if Alice and Chad can help, because you can reach
right door handle, but you are busy and they are free.
[D] all three of you are busy, so it’s better to wait until later.
- Solution: [A]

• Responsiveness. This category contains 96 yes/no ques-
tions, based on Sort Cubes task from RoCoBench. The
questions ask an LLM to speak for one agent and choose
the most appropriate response to other agents under a
given task context.

297

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

7 panels on the table, ordered left to right: panel1,...,panel7. They
form a straight assembly line, panel1 is closed to panel2 and
farthest from panel7.
You are robot Alice in front of panel2. You are collaborating with
Bob, Chad to sort cubes into their target panels. The task is NOT
done until all three cubes are sorted. At current round:
blue square is on panel5 pink polygon is on panel3 yellow trapezoid
is on panel3
Your goal is to place blue square on panel2, but you can only reach
panel1, panel2, panel3: this means you can only pick cubes from
these panels, and can only place cubes on these panels. You can
help others by moving other cubes that are within your reachable
panels. Never forget you are Alice! Never forget you can only
reach panel1, panel2, panel3!

You are Alice. Chad needs to put yellow trapezoid on panel6, and
asked you for help. How should you respond? Think step-by-step.
If you can help, your answer must start with YES and propose a
plan to help. If you can’t help, must answer NO.

3) Adaptation to Unexpected Scenarios:
• This category contains 31 questions in the format of

multiple choice (A, B, C), based on 3 RoCoBench
tasks: Arrange Cabinet, Make Sandwich, Sweep Floor.
The questions hypothesize unexpected situations that
were not specified in the task context, and evaluate
an LLM-represented agent’s ability to choose the most
appropriate response.
You are a robot Chad, collaborating with Dave to make a [veg-
etarian sandwich]. Food items must be stacked following this or-
der: bread slice1, tomato, cheese, cucumber, bread slice2, where
bread slice1 must be PUT on cutting board. You must stay on right
side of the table! This means you can only PICK food from right
side, and Dave can only PICK from the other side. Only one robot
can PUT at a time, so you must coordinate with Dave. At the
current round: You can see these food items are on your reachable
side: bread slice1: on cutting board cheese: atop tomato tomato: atop
bread slice1 cucumber: atop cheese ham: on your side beef patty:
on your side Your gripper is empty
You are Chad. Your gripper is not working right now. What should
you say to Dave? Select exactly one option from below. You must
first output a single option number (e.g. A), then give a very short,
one-line reason for why you choose it.
Options:
A: Sorry Dave, we can’t complete the task anymore, my gripper is
broke.
B: Let’s stop. The recipe needs ham but Dave can’t reach my side
and my gripper is not functioning.
C: Dave, go ahead and finish the sandwich without me, there isn’t
anything we need on my side anyway.

C. Evaluation Results

Setup. All questions are designed to have only one
correct answer, hence we measure the average accuracy in
each category. We evaluate GPT-4 (OpenAI), GPT-3.5-turbo
(OpenAI), and Claude-v1 (Anthropic[28]). For GPT-4,

we use two models marked with different time-stamps,
i.e. 03/14/2023 and 06/13/2023. Results are summarized
in Table IV: we observe that, with small performance
variations between the two versions, GPT-4 leads the
performance across all categories. We remark that there is
still a considerable gap from fully accurate, and hope this
dataset will be useful for improving and evaluating language
models in future work.
Qualitative Results. We observe GPT-4 is better at
following the instruction to formulate output, whereas
GPT-3.5-turbo is more prone to confident and elongated
wrong answers. See below for an example response from
an agent capability question (the prompt is redacted for
readability).
You are robot Chad .. [cube-on-panel locations...]. You can reach: [panels]
Which cube(s) can you reach? [...] Answer with a list of cube names,
answer None if you can’t reach any.
Solution: None
GPT-4: None Claude-v1: yellow trapezoid

GPT-3.5-turbo:
At the current round, I can reach the yellow trapezoid cube on panel3.

298

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

Self-knowledge Communication Adaptation
Capability Memory Inquiry Respond

GPT-4-0314 0.67 ± 0.06 0.84 ± 0.06 0.79 ± 0.06 0.83 ± 0.04 0.68 ± 0.08

GPT-4-0613 0.68 ± 0.06 0.91 ± 0.04 0.57 ± 0.08 0.86 ± 0.03 0.71 ± 0.08

GPT-3.5-turbo 0.68 ± 0.06 0.59 ± 0.07 0.48 ± 0.08 0.30 ± 0.05 0.58 ± 0.09

Claude-v1 0.37 ± 0.06 0.70 ± 0.07 0.55 ± 0.08 0.60 ± 0.05 0.65 ± 0.09

TABLE IV: Evaluation results on the multi-agent LLM reasoning dataset. We measure the question-answering accuracy on
each test category and compare performance of four different models.

299

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 10,2024 at 01:14:45 UTC from IEEE Xplore. Restrictions apply.

