
Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 256

nature machine intelligence

Article https://doi.org/10.1038/s42256-025-00983-2

Preserving and combining knowledge in
robotic lifelong reinforcement learning

Yuan Meng   1,5, Zhenshan Bing   1,2,5 , Xiangtong Yao   1,5, Kejia Chen1,
Kai Huang3 , Yang Gao2 , Fuchun Sun4 & Alois Knoll1

Humans can continually accumulate knowledge and develop increasingly
complex behaviours and skills throughout their lives, which is a capability
known as ‘lifelong learning’. Although this lifelong learning capability is
considered an essential mechanism that makes up general intelligence,
recent advancements in artificial intelligence predominantly excel in
narrow, specialized domains and generally lack this lifelong learning
capability. Here we introduce a robotic lifelong reinforcement learning
framework that addresses this gap by developing a knowledge space
inspired by the Bayesian non-parametric domain. In addition, we enhance
the agent’s semantic understanding of tasks by integrating language
embeddings into the framework. Our proposed embodied agent can
consistently accumulate knowledge from a continuous stream of one-time
feeding tasks. Furthermore, our agent can tackle challenging real-world
long-horizon tasks by combining and reapplying its acquired knowledge
from the original tasks stream. The proposed framework advances our
understanding of the robotic lifelong learning process and may inspire the
development of more broadly applicable intelligence.

Humans show a remarkable ability for lifelong learning by consistently
acquiring knowledge and adapting to new task scenarios throughout
their lives. This involves the constant and incremental development of
increasingly complex behaviours, recognized as a crucial mechanism
for achieving general intelligence. Recent advancements in artificial
intelligence have showcased agents achieving remarkable perfor-
mance across a wide range of tasks1, such as image generation2, article
writing3 and autonomous driving4. However, even though current
methodologies yield impressive outcomes, they primarily focus on
agents specialized in narrowly distributed tasks. In contrast, untrained
agents generally require more game-play experiences throughout their
lifespan than humans and struggle to generalize effectively to new
variations. One notable gap between machine-intelligent agents and
humans is the lack of lifelong learning capability in current intelligent
agents. Lifelong learning, also referred to as incremental or continual

learning5–7, addresses the challenge of asynchronously acquiring knowl-
edge from a continuous stream of tasks while mitigating forgetting. Its
primary goal is to gradually extend the accumulated knowledge and
use it for ongoing learning tasks, thereby building more complicated
behaviours by knowledge combination and reapplication. This study
focuses on robotic lifelong reinforcement learning (LRL), a domain
where reinforcement learning provides an agent–environment inter-
action framework that is well suited for exploring the learning process
in a sequential manner. Figure 1a illustrates the training process for a
general LRL agent in the robotic context. Given an infinite stream of
robotic tasks, the agent continually masters the tasks one after another,
consistently accumulating knowledge and skills.

For deep learning-based algorithms, the primary challenge when
facing a stream of tasks is balancing the stability and plasticity1 of
the neural networks. A common issue in this context is ‘catastrophic

Received: 1 May 2024

Accepted: 5 January 2025

Published online: 5 February 2025

 Check for updates

1School of Computation, Information and Technology, Technical University of Munich, Garching, Germany. 2State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, China. 3Key Laboratory of Machine Intelligence and Advanced Computing, School of Computer Science and
Engineering, Sun Yat-sen University, Guangzhou, China. 4Department of Computer Science and Technology, Tsinghua University, Beijing, China.
5These authors contributed equally: Yuan Meng, Zhenshan Bing, Xiangtong Yao.  e-mail: zhenshan.bing@tum.de; huangk36@mail.sysu.edu.cn;
gaoy@nju.edu.cn; fcsun@tsinghua.edu.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-00983-2
http://orcid.org/0009-0001-5949-8793
http://orcid.org/0000-0002-0896-2517
http://orcid.org/0000-0003-2556-3072
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-025-00983-2&domain=pdf
mailto:zhenshan.bing@tum.de
mailto:huangk36@mail.sysu.edu.cn
mailto:gaoy@nju.edu.cn
mailto:fcsun@tsinghua.edu.cn

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 257

Article https://doi.org/10.1038/s42256-025-00983-2

various tasks simultaneously, this problem still persists in the sequen-
tial learning process. Furthermore, it relies on a predefined range of
task distributions, which are often limited in scope and struggle to
generalize when encountering novel non-parametric task variability18.
Such variability shows qualitative distinction and cannot be adequa-
tely described by continuous parameters, as they require models
to learn entirely new sets of rules and interactions, thus challenging
their generalization capabilities18. Motivated by MTRL, another set
of approaches to tackle the stability–plasticity dilemma is known as
‘learning to learn’ or meta reinforcement learning1. Recent studies
have provided diverse approaches that enable agents to acquire knowl-
edge across various task distributions while adapting to new tasks
based on acquired knowledge in few-shot or zero-shot manner25–29.
One notable example is continuous environment meta-reinforcement
learning25, which incorporates a Gaussian mixture model in its prior
space of task encoder, which can infer and cluster the task latent repre-
sentation at a meta level. However, the Gaussian mixture model faces
limitations due to its reliance on a predetermined task amount, an
assumption incompatible with the typically unknown or infinite task
amounts in LRL.

Our study aims to develop a deep reinforcement learning frame-
work for robotic lifelong learning. The focus is on continually learning
and preserving knowledge from a stream of one-time feeding task
scenarios. The proposed agent shall not forget the knowledge it
acquired and can consistently perform stably on corresponding tasks
throughout its lifespan. Moreover, our framework is designed to handle
more complex long-horizon tasks by effectively combining and

forgetting’1,8. This refers to the phenomenon where the neural net-
work parameters associated with previously learned skills are rapidly
overwritten when the agent learns new incoming tasks. Consequently,
the agent’s performance substantially deteriorates when revisiting
previously mastered tasks. Recent lifelong machine learning studies
have introduced various approaches, including regularization5,9,10,
structure modularity11–13 and experience replay14–16. These methods,
however, have primarily been applied to static datasets in conventional
machine learning domains such as vision task classification8,17, leaving
their effectiveness in robotic learning unclear. Regularization can
lead to improper parameter shifting and error accumulation, while
structure modularity may struggle with dynamic adaptation when
facing an unknown number of tasks. Without replay, both regulariza-
tion and structure modularity methods tend to overfit on predefined
tasks, lacking the flexibility to adapt to new ones in lifelong learning.
Our approach does not strictly belong to any of these categories but
instead draws inspiration from these methods, aiming to overcome
their limitations while leveraging their strengths.

In the context of deep reinforcement learning, a common idea to
avoid ‘catastrophic forgetting’ is through multi-task reinforcement
learning (MTRL)18–21. In MTRL, the agent has simultaneous access to
all tasks during training, avoiding the forgetting problem inherent in
deep neural networks. Recent works in this domain include contex-
tual attention-based representation learning22, soft modularization21,
feature-wise linear modulation23 and other baselines19,20,24. However, the
MTRL deviates from actual human learning patterns. While MTRL tries
to avoid the issue of catastrophic forgetting by providing data from

Reach Push Pick–place Door open Faucet open Drawer close Button press Peg unplug Window open Window close

... ∞

Sequential task: one-time feeding stream of tasks

Embodied lifelong learning agent

State observations Actions

∞

0

Knowledge accumulation

a

Embodied
agent

Knowledge
space

Task encoder

Policy

LLM

Long-horizon tasks

Bottle push
Button press

Subtask 1:
Bottle push

Subtask 2: Button press

States

Actions

“Press the button,”
“Push the bottle,”...

b

Fig. 1 | Concept illustration of robotic LRL process. a, Overview illustration
of the general LRL process. Unlike the conventional multi-task approaches,
where agents have simultaneous access to all tasks, an LRL agent can master
tasks sequentially, one after another. Moreover, the agent should continually
accumulate knowledge throughout the process. This concept emulates the

human learning process. b, Our proposed framework under the lifelong learning
concept. We instruct the deployed embodied agent to perform long-horizon
tasks using language commands. The agent accomplishes these tasks through
the combination and reapplication of acquired knowledge.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 258

Article https://doi.org/10.1038/s42256-025-00983-2

reapplying the underlying knowledge acquired from the ongoing task
stream. This highlights its capability for incremental development of
progressively sophisticated behaviours. To achieve the objective, we
develop a framework inspired by the Dirichlet process mixture model
(DPMM), a prominent model in the Bayesian non-parametric domain,
with a memoized variational Bayes inference method (memoVB)30. This
combination enables simultaneous task inference and asynchronous
knowledge preservation at the upstream level. Moreover, our frame-
work utilizes natural language-based side information to assist in task
inference. This information is encoded by a pre-trained large language
model (LLM)31. The resulting language embedding offers the agent
richer contextual insights into the current task scenario, contributing
to more precise and disentangled representations in the knowledge
space. As a result, the collaborative efforts of DPMM and language
embeddings contribute to more accurate downstream action pattern
learning. Furthermore, our embodied agent shows the ability to solve
challenging, long-horizon manipulation tasks in the real world by
combining and reapplying knowledge acquired throughout its lifelong
learning. This showcases its potential for achieving general intelligence
and may inspire the development of more broadly applicable intelligent
agents. We name our proposed framework as LEGION: a Language
Embedding-based Generative Incremental Off-policy Reinforcement
Learning Framework with Non-parametric Bayes.

Results
In this section, we present the test results of our LEGION framework.
We begin by demonstrating its performance in real-world manipula-
tion tasks, covering both long-horizon tasks and the original sequence
of single-task training. Next, we assess how knowledge is preserved
in the prior space. In addition, we provide quantitative data to evalu-
ate key aspects of LRL within our framework. Finally, we highlight
the contribution of our non-parametric knowledge space in few-shot
knowledge recall. The experimental set-up for both simulation
and real-world experiments is detailed in ‘Training and deployment’
in Methods and Supplementary Section 5.

Manipulation performance
Long-horizon tasks. The deployment set-up of our framework is
illustrated in Fig. 1b. To provide human commands of the task descrip-
tions, we use a speech-recognition device and a pre-trained LLM. The
trained embodied agent receives the state observations conditioned
with language embeddings as inputs. After receiving the observations,
the task encoder infers the knowledge to which it should apply. Sub-
sequently, the downstream policy generates corresponding actions
to accomplish the task. In the real-world scenario, we employ a KUKA
iiwa robot arm as our embodiment and use a global RealSense camera
to acquire vision information. A real-world video demonstration
(Supplementary Video 1) showcases our embodied agent successfully
completing the long-horizon task ‘clean the table’, which consists of
seven sequential subtasks. Our agent accomplishes this by recom-
bining the underlying knowledge gained from the one-time feeding
task stream (Fig. 2), illustrating its effective generalization in the face
of diverse and challenging task distributions. This ability mirrors
the human learning process over a lifetime and is regarded as a key
mechanism underlying general intelligence. Conventional approaches
to such long-horizon tasks involve relying on human demonstrations
for direct imitation. However, these approaches often result in limited
generalization and flexibility when confronting varied task distribu-
tions and sequences. In contrast, our framework offers flexibility
in task execution order, allowing the agent to complete the entire
task in any sequence through the combination and reapplication of
acquired knowledge. To highlight the generalization and flexibility
of our proposed framework, we reorder the subtasks randomly and
present two additional demonstrations in Supplementary Video 2.
As our broad task assumption includes long-horizon tasks with strict

subtask conditions as a subset, we also demonstrate how our agent
solves a conventional strictly conditioned long-horizon task, ‘make
the coffee’ (Supplementary Section 3.2).

Stream of tasks. Given a stream of one-time feeding tasks, our pro-
posed LRL agent can master the task continually, one after the other,
without forgetting previously acquired knowledge. This incremental
learning approach mimics the natural human learning process and has
the potential to replace, and eventually surpass, inefficient manual
services in real-world applications. To assess the lifelong learning
capability of our proposed agent, we implement ten distinct robotic
manipulation tasks to build up a task stream. Our agent can gain knowl-
edge asynchronously from this stream and eventually achieve the
given long-horizon task (Supplementary Video 1). The agent under-
goes training on each task for 1 million steps before switching to the
next task. The task sequence follows an easy-to-hard task ordering
(Supple mentary Section 3.1): ‘reach → push → pick–place → door open →
faucet open → drawer close → button press → peg unplug → window
open → window close’.

To demonstrate the performance of our proposed framework on
its original sequence task distributions, we showcase the snapshots
of its real-world tasks in Fig. 2, and we provide Supplementary Video 3
of all tasks. As observed in the snapshots and video, our proposed
embodied agent completes all tasks within the given time steps. In addi-
tion, in each real-world task, we conduct at least three trials, varying the
initial object positions and goal positions. The average success rates
for these trials are presented in Extended Data Table 1. To demonstrate
stability and robustness within the given base task distributions, our
embodied agent consistently accomplishes various manipulation
tasks, including ‘reach’, ‘faucet open’, ‘drawer close’, ‘button press’ and
‘window open/close’, leveraging asynchronously acquired knowledge.
For some more challenging tasks such as ‘push’, ‘pick–place’ and ‘door
open’, our agent can also maintain a high success rate with a score of
at least 0.67.

Knowledge preservation
We evaluate knowledge preservation through t-distributed stochastic
neighbor embedding (t-SNE) visualizations for intuitive understanding
and statistical analysis for quantitative performance assessment
during training. Furthermore, a detailed ablation study highlighting
the contributions of our Bayesian non-parametric knowledge space
and language embeddings is provided in Supplementary Section 3.3.

Visualization. In our framework, the task encoder initially infers the
state inputs and generates the latent samples as inference results. Sub-
sequently, the inferred task results are fitted into the non-parametric
knowledge space. To assess how the acquired knowledge is preserved
and managed in its space, we use t-SNE to visualize our knowledge
space in a two-dimensional plane. Figure 3a–e shows the projections of
knowledge space after training on two, four, six, eight and all ten tasks,
respectively. Each coloured group signifies a complete task trajectory
and is assigned to a cluster component in our non-parametric knowl-
edge space. In addition, the order of these samples is represented by
corresponding colour opacity, progressing from light to dark. Notably,
our proposed DPMM module in the knowledge space can generate
new components to store new task inference results when switch-
ing environments, facilitating the capability to infer and store new
knowledge. In addition, to evaluate how our knowledge space handles
acquired knowledge, we make the agent undertake the training loop
twice. During the second loop, the agent revisits previously mastered
tasks, whose knowledge has been preserved in the agent’s knowledge
space. In this phase, the agent is expected to directly utilize the exist-
ing knowledge to complete the tasks, rather than inferring a new task
knowledge cluster in its prior space. We present the results after the
first loop (circle markers) and after the second loop (cross markers)

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 259

Article https://doi.org/10.1038/s42256-025-00983-2

in Fig. 3f. The t-SNE results demonstrate that our proposed LEGION
framework can infer and identify earlier acquired knowledge and merge
it into existing cluster components associated with individual tasks.

Statistics. For a quantitative assessment of our proposed framework,
we present the performance results in Table 1 of each task in both con-
ventional multi-task and lifelong training processes. The evaluation for

0 s 1.75 s 3.50 s

Reach

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

0 s 2.50 s 5.00 s

Push

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

0 s 3.75 s 7.50 s

Pick–place Door open

Faucet open Drawer close

Button press Peg unplug

Window open Window close

Fig. 2 | Performance on real-world single tasks. Snapshots of embodied agent on individual manipulation tasks after LRL.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 260

Article https://doi.org/10.1038/s42256-025-00983-2

MTRL can lead to an in-depth understanding of our framework in terms
of synchronized knowledge acquisition and preservation. In the context
of lifelong learning, we utilize an easy-to-hard task ordering strategy,
where the agent begins by learning fundamental tasks that serve as
milestones for mastering more complex action patterns in subsequent
tasks. For more details on other task ordering variations, refer to Supple-
mentary Section 3.1. We report the success rates for each task (row-wise)
after the agent trained on a one-time feeding task stream (column-wise).
For example, the first column from the left side represents the agent’s
performance on all tasks after it has trained on the task ‘reach’. Further-
more, we incorporate two additional metrics to evaluate the specific
characteristics of our lifelong learnable agent, namely, ‘forgetting’ and
‘forward transfer’. ‘Forgetting’ is a scalar metric in the range [−1, 1], repre-
senting how much knowledge our proposed agent may forget at the end
of its lifespan. A lower value in this metric signifies better performance.
‘Forward transfer’, in contrast, has a range of [0, 1] that considers how
much the earlier tasks knowledge aids the subsequent tasks, where a
larger value indicates better performance. For more details of these met-
rics, refer to equations (2) and (3). We also report our agent’s multi-task
performance of each task listed in the right column of the table. Each
datum in the table is based on trials with five random seeds. The last
row calculates the average value of the data alongside column-wise.
As indicated in the table, after being trained on earlier tasks, the agent
maintains its performance on corresponding tasks even when trained

with subsequent tasks. This implies that the acquired knowledge is
effectively preserved within the model. The average success rate gradu-
ally increases, reaching 0.84. Furthermore, our proposed framework’s
overall average forgetting score is 0.0, showcasing its robust knowledge
preservation capability. We observe that negative scores occur on tasks
such as ‘door open’; this is because the subsequent learning process
enhances performance on previously learned tasks. For instance, after
training on ‘door open’, the agent initially achieves a success rate of 0.4
on this task. However, after training on ‘faucet open’, the success rate
for ‘door open’ improves to 0.8. This improvement is probably because
the knowledge gained in understanding how to open a faucet (whether
clockwise or anticlockwise) contributes positively to the door-opening
task. In addition, positive forward transfer phenomena are observed in
our agent’s lifelong learning process. Specifically, for the task ‘drawer
close’, earlier acquired knowledge from tasks such as ‘push’, ‘pick–place’
and ‘door open’ contributes to the success of ‘drawer close’. For instance,
the push and pull motions learned from previous tasks aid the agent in
completing the drawer close task. The final average score of this metric
is 0.10. In the context of a multi-task learning process, where the agent
has simultaneous access to all tasks, our framework attains superior per-
formance with a final success of 0.94 (Supplementary Sections 1 and 2).

Few-shot knowledge recall. Knowledge rehearsal is a critical com-
ponent of lifelong learning. Recent studies, particularly in computer

Reach

Push

Pick–place

Door open

Faucet open

Drawer close

Button press

Peg unplug

Window open
Window close

a b

c d

e

f Cluster 0, 1st loop (push) Cluster 5, 1st loop (peg unplug)

Cluster 5, 2nd loop (peg unplug)

Cluster 6, 1st loop (drawer close)

Cluster 6, 2nd loop (drawer close)

Cluster 7, 1st loop (button press)

Cluster 7, 2nd loop (button press)

Cluster 8, 1st loop (window open)

Cluster 8, 1st loop (window open)

Cluster 9, 1st loop (window close)

Cluster 9, 2nd loop (window close)

Cluster 0, 2nd loop (push)

Cluster 1, 1st loop (reach)

Cluster 1, 2nd loop (reach)

Cluster 2, 1st loop (pick–place)

Cluster 2, 2nd loop (pick–place)

Cluster 3, 1st loop (door open)

Cluster 3, 2nd loop (door open)

Cluster 4, 1st loop (faucet open)

Cluster 4, 2nd loop (faucet open)

Fig. 3 | t-SNE snapshots of knowledge space. a–e, t-SNE projection of knowledge
space after training on two tasks (a), four tasks (b), six tasks (c), eight tasks (d)
and all ten tasks (e). f, t-SNE projections after the first training loop (circle) and

after the second loop (cross). Notably, the inference results of the second training
loop are merged into corresponding knowledge groups that are preserved
during the first loop.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 261

Article https://doi.org/10.1038/s42256-025-00983-2

vision14,16,32,33, have shown that rehearsal effectively mitigates forgetting
during the learning process. However, it remains unclear whether this
technique performs as well in the robotic domain, where data are con-
tinuous and time sequential. In addition, recent biological research34–41
suggests that knowledge rehearsal aids in consolidating long-term
memory and improves performance through deep memory recall,
even after extended pauses (Supplementary Section 9). Building on
these insights, we explore how our proposed agent performs during
few-shot knowledge recall with only intermittent replay.

To demonstrate the application and potential limitations of
existing replay-based lifelong learning methods in robotic reinforce-
ment learning, we conduct comparison experiments against these
baseline methods. All models use the same soft-actor–critic (SAC)
policy, including the neural network backbone and shared hyper-
parameters. Each experiment is repeated at least five times, and the
average success rate and standard deviation during evaluation are
used as metrics to ensure fairness. The following baseline models are
employed for comparison. (1) Reservoir. This baseline uses the ‘res-
ervoir’ sampling method in the buffer to approximate the empirical
distribution of observed samples. The buffer is designed to maintain a
maximum data ratio of 50%. Unlike our framework, this model does not
include an upstream inference and knowledge preservation module,
so its policy network inputs consist of only the raw task observa-
tions without the upstream inference representations. This allows
us to assess the strengths of our proposed Bayesian non-parametric
knowledge space in task inference, knowledge preservation and its
impact on overall task performance. (2) Perfect memory. Based on
the ‘reservoir’ baseline, we extend the buffer size to match the total
training steps, meaning that all past trajectories are stored without
being forgotten or overwritten. (3) Averaged gradient episodic memory
(A-GEM)14 is a rehearsal-based method that treats lifelong learning
as a constrained optimization problem. It constructs a global loss
based on old training samples to ensure no loss of performance on
previous tasks, projecting new sample gradients to avoid interference.
Here for each base task, we maintain an episode memory of 10,000.

Figure 4a shows the average success rate during evaluation. As
seen in the figure, our proposed LEGION framework consistently out-
performs other methods, demonstrating a steady increase in success
rate as new tasks are introduced. While perfect memory maintains

a full buffer, its success rate reaches around 0.2 throughout train-
ing, showing no obvious improvement, highlighting its limitations
in adapting or generalizing as the task stream progresses. Similarly,
reservoir shows a flat performance curve with no notable gains, and
A-GEM also underperforms in our benchmark. To further illustrate the
limitations of replay-based methods in robotic LRL, Fig. 4b visualizes
the data ratio in the training batch. For instance, after training on the
second task ‘push’, the data ratio for ‘push’ initially remains at around
50%. However, as the agent moves through subsequent tasks, this ratio
gradually decreases, eventually dropping to around 10% by the end
of training. In contrast, in MTRL, the agent trains on individual tasks
with a constant data ratio in the batch, ensuring stable learning condi-
tions. This gap in the data sampling process during lifelong learning
may weaken knowledge retention and lead to overall performance
degradation over time. Our framework addresses this challenge by
utilizing a Bayesian non-parametric knowledge inference and cluster-
ing module, which ensures consistent knowledge preservation and
stable performance throughout the lifelong learning process despite
fluctuating data ratios.

To assess our agent’s knowledge-recall performance after pausing
on tasks for a while, we selected 5 tasks from our original sequence,
ordered from easy to hard, and trained the agent on them sequentially
(1 million steps for each task) across 3 repeat loops: ‘reach → push →
faucet open → button press → window close’. In the replay buffer, we
allocated space for data from only three tasks at a time. This set-up
means that while training on the fourth task, data from the first task are
gradually replaced by data from the fourth, and by the time the fifth task
is reached, replay data from the first task are no longer available. In the
second loop, we revisit the first task and compare its performance in
the second loop to that in the first. This process is repeated similarly for
the other tasks during the second and third loops. Extended Data Fig. 1
shows the t-SNE projections of the knowledge space after each task
learning for all three loops. Figure 4c–g shows the average success rates
for each task during the first loop (orange) and the subsequent second
(green) and third (blue) loops. As illustrated, despite a 1 million-step
pause for each task, the agent quickly re-masters them in the second
and third loops, surpassing its initial performance. Our framework
demonstrates faster convergence on all tasks during subsequent loops,
following few-shot attempts, emphasizing the benefits of few-shot

Table 1 | Statistics of individual task success rate with easy-to-hard task ordering

Train after

Evaluation Lifelong learning Multi-task

Reach Push Pick
place

Door
open

Faucet
open

Drawer
close

Button
press

Peg
unplug

Window
open

Window
close

Forgetting Forward
transfer

Reach 1.00 1.00 0.80 0.80 0.80 1.00 1.00 1.00 1.00 1.00 0.00 NA 1.00

Push 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.20 0.00 0.80

Pick–place 0.00 0.00 0.80 1.00 0.80 0.80 1.00 0.60 1.00 0.80 0.00 0.00 0.80

Door open 0.00 0.00 0.00 0.40 0.80 0.80 0.60 0.40 0.80 0.60 −0.20 0.00 1.00

Faucet open 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00

Drawer close 0.00 1.00 0.80 0.80 0.00 0.60 0.80 0.80 1.00 1.00 −0.40 0.52 1.00

Button press 0.00 0.00 0.00 0.00 0.40 0.00 0.80 0.60 0.80 0.60 0.20 0.07 1.00

Peg unplug 0.00 0.00 0.00 0.00 0.00 0.20 0.00 1.00 0.60 0.60 0.40 0.03 0.80

Window open 0.00 0.00 0.40 0.00 0.60 0.00 0.20 0.00 0.80 1.00 −0.20 0.15 1.00

Window close 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.40 0.40 1.00 NA 0.13 1.00

Average 0.10 0.30 0.38 0.40 0.54 0.58 0.64 0.66 0.82 0.84 0.00 0.10 0.94

In LRL, we assess the performance of all tasks (row-wise) once the agent completes training on each one-time feeding task (column-wise). In multi-task reinforcement learning, the agent
is evaluated after simultaneous training on all tasks (row-wise). Each datum is based on at least five trials, with average values reported for evaluation. The metrics ‘forgetting’ and ‘forward
transfer’ are used to assess the specific characteristics of the LRL agent. ‘Forgetting’, in the range [−1, 1] (equation (2)), measures the extent of knowledge retention, with lower values indicating
better performance. ‘Forward transfer’, in the range [0, 1] (equation (3)), evaluates how well earlier task knowledge supports subsequent tasks, where higher values denote better performance.
NA, not available.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 262

Article https://doi.org/10.1038/s42256-025-00983-2

memory recall. This mirrors the biological theory of mnemonics,
where knowledge retention supports task re-mastery. Specifically,
in the ‘reach’ task, despite the enforced pause, the agent consistently
maintains knowledge, achieving a success rate of 0.3–0.4 at the initial
evaluation checkpoint. Moreover, the agent shows an average success-
rate improvement of 0.2 in the final loop compared with its initial
attempts. After few-shot knowledge recalls in the third loop, the frame-
work reaches the maximum success rate on most tasks. This improve-
ment is attributed to effective deep memory recall enabled by our
framework leveraging the DPMM.

To quantify the improvement in few-shot knowledge recall, we
calculate the improvement percentage for each task (Extended Data
Table 2) using equation (4). The results show that the improvement
varies across tasks: 19.63% for ‘reach’, 6.66% for ‘push’, 16.77% for ‘faucet
open’, 9.94% for ‘button press’ and 6.78% for ‘window close’ between
the first and second loops. Moreover, comparing the first and third
loops reveals even greater success-rate enhancements. On average, our
framework shows an 11.96% improvement between the first and second
loops and a substantial 21.36% improvement from the first to the third

loop. These findings highlight our framework’s strong capability for
effective knowledge recall, rapid adaptation and improved task per-
formance through few-shot exploration. The consistent improvement
across multiple tasks underscores its robustness in re-mastering tasks
and maintaining high success rates, showcasing the potential of our
framework, especially the DPMM knowledge space for advancing LRL.

Discussion
Robotic lifelong learning focuses on acquiring and retaining knowledge
from a continuous stream of tasks, enabling agents to progressively
build more complex behaviours through knowledge integration and
reuse. Our study presents a deep reinforcement learning framework
that continuously accumulates knowledge from a stream of tasks,
demonstrating human-like lifelong learning capability. In addition,
it solves complex long-horizon tasks by combining and reapplying
acquired skills, a key step towards achieving general intelligence.

In our real-world experiment with a KUKA robot arm, our agent,
aided by real-time vision from a RealSense camera and language
embeddings from an LLM, successfully completes a sequence of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1.0

Steps (×107)

Perfect memory
Reservoir
A-GEM
LEGION (ours)

a

Push

After 2 tasks After 4 tasks After 6 tasks After 8 tasks After 10 tasks

Push Push Push Push

b

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Steps (×106)

Reach

1st loop
2nd loop
3rd loop

c

Steps (×106)

Pushd

Steps (×106)

Faucet opene

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

Steps (×106)

Su
cc

es
s

ra
te

Su
cc

es
s

ra
te

Su
cc

es
s

ra
te

Su
cc

es
s

ra
te

Su
cc

es
s

ra
te

Button pressf

0 0.2 0.4 0.6 0.8 1.0

0
0.2
0.4
0.6
0.8
1.0

Steps (×106)

Su
cc

es
s

ra
te

Window closeg

<50% <25% <17% <13% <10%

1st loop
2nd loop
3rd loop

1st loop
2nd loop
3rd loop

1st loop
2nd loop
3rd loop

1st loop
2nd loop
3rd loop

Fig. 4 | Evaluation of replay’s contribution in knowledge recall. a, The average
success rates from five runs of the LEGION framework compared with three
replay-based lifelong learning methods: perfect memory, reservoir and A-GEM.
The figure shows that LEGION consistently outperforms these methods,
demonstrating a steady increase in success rate throughout the task sequence.
b, Evolution of the ‘push’ task data ratio within the training batch. While the
batch size remains constant, the data ratio for the ‘push’ task gradually decreases

from an initial maximum of 50% to 10% after learning 10 tasks. c–g, Few-shot
knowledge-recall performance on reach (c), push (d), faucet open (e), button
press (f) and window close (g). The agent is trained sequentially on five selected
tasks over three repeated loops, with buffer capacity limited to three tasks at a
time. This configuration forces the agent to pause on each base task for 1 million
steps without replay. For a and c–g, the data are calculated based on at least five
trials, presented as mean ± standard deviation (μ ± σ).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 263

Article https://doi.org/10.1038/s42256-025-00983-2

tasks, efficiently accumulating knowledge and demonstrating flexible,
autonomous skill reapplication for long-horizon tasks without relying
on predefined human demonstrations. In our LRL framework, we
analyse knowledge management through both visualization and
statis tical perspectives. The non-parametric model in the knowledge
space dynamically adjusts to new task inputs by creating or merging
components, ensuring continuous knowledge preservation without
prior knowledge quantity requirements. Quantitatively, the agent’s
success rate improves over time, demonstrating effective knowledge
accumulation in LRL.

In summary, our framework LEGION (details refer to Fig. 5) excels
at both preserving knowledge and inferring new tasks in its Bayesian
non-parametric knowledge space during lifelong learning. Using lan-
guage embeddings to aid in task inference, the agent can efficiently

undertake long-horizon tasks, showcasing flexibility in addressing
complex tasks based on accumulated knowledge. We acknowledge
that the replay mechanism is an inherent part of our framework due
to its use of SAC as policy, which relies on data sampling from a buffer
and offline parameter updates. However, the replay is not strictly tied
to our approach using the Bayesian non-parametric knowledge space,
but rather a feature of the SAC itself. Our framework currently shows
substantial improvements in few-shot exploration with intermittent
replay. In the future, we plan to optimize it further to better balance
stability and adaptability without relying on replay buffers, while
also aiming to tackle more challenging scenarios such as zero-shot
inference. Meanwhile, we acknowledge that our current framework
operates in structured environments with predefined task set-ups and
relies on AprilTags for perception. In future work, we aim to expand our

Generative
module

Reach Push Pick–place Door open Faucet open Drawer close Button press Peg unplug Window open Window close

...

Pretrained
LLM

Language
embeddings

Task encoder

z
KL

Dirichlet process mixture
knowledge space

Language
embedding

reconstruction

Dynamics
prediction

embed

actorcritics Critics Actor

Buer

State observation st Action at

Side information

Update

Upstream task inference and knowledge preservation

Downstream policy

Traininga

Pretrained
LLM

Language
embeddings Task encoder

z

Dirichlet process mixture
knowledge space

K → ∞

K → ∞

Actor

RealSense

Real2Sim

Sim2Real

AprilTags

Real-world environment Embodied agent

Side information

State observations

End eector positions Object positions

Actions Control inputs

• Coordinate transformation

• Camera oset

• Safety check

b Deployment

Sequential task: one-time feeding stream
of tasks

dyn

Fig. 5 | LEGION framework overview for training and deployment. a, Training.
The framework receives language semantic information and environment
observations as input to make policy decisions and output action patterns, it
trains on only one task at a time. ℒ represents the loss functions and is explained
in ‘Upstream task inference’ in Methods. b, Deployment. In the real-world

demonstration, the agent parameters remain frozen, the agent receives input
signal from real-world hardware and outputs corresponding action signals, both
‘Sim2Real’ and ‘Real2Sim’ modules process the data to align the gap between the
simulation and real world.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 264

Article https://doi.org/10.1038/s42256-025-00983-2

framework to unstructured, dynamic environments featuring diverse
object arrangements and unseen objects, with the goal of enhancing
the generalization and robustness of lifelong learning systems. In
addition, we plan to explore applying our non-parametric knowledge
space to robot learning involving multiple agents or heterogeneous
embodiments (Supplementary Section 3.5), intending to achieve
clustered and transferable general intelligence. As our current work
assumes the reward function to be an inherent and static property of
the environment, another promising future direction involves using
LLMs42–44 for continuous reward refinement during the lifelong learn-
ing process. This would enable agents to quickly adapt to entirely new
control tasks. Moreover, the ability to continuously learn and preserve
skills from a stream of tasks using a non-parametric knowledge space,
combined with smooth and stable downstream action outputs from
the diffusion model, holds potential for the development of broadly
applicable large behaviour models.

Methods
Training and deployment
Training. Figure 5 a illustrates the concept overview of our proposed
LEGION framework. Unlike the typical multi-task approaches, where
the agent learns all tasks at once, our proposed framework can conti-
nuously gain knowledge from a stream of one-time feeding tasks.
This implies that our agent can imitate the real human learning pro-
cess, tackling each manipulation task one after another throughout
its lifespan.

During training, we let the agent learn tasks one by one, allowing
the agent to undergo 1 million training steps for each task. Importantly,
we evaluate the agent’s performance on all tasks every 10,000 steps by
following the conventional multi-task fashion, irrespective of whether
it has undergone training for these tasks or not. In our framework,
we follow the off-policy training mode as it has more sampling effi-
ciency. To achieve both preserving existing knowledge and inferring
new tasks simultaneously, our proposed framework is structured
hierar chically into two parts, namely, the upstream task inference and
knowledge preservation module and the downstream policy learn-
ing module. The upstream module consists of the following compo-
nents: the pre-trained language embedding module, the task encoder,
the Dirichlet process mixture knowledge space, and the generative
modules. In the simulation, we employ an offline approach where lan-
guage embeddings are pre-encoded using an LLM combined with an
audio recognition device and stored for training. This pre-processing
step accelerates training by eliminating the need for real-time encod-
ing, which is computationally intensive. For specific details regarding
the content of the language side information, refer to Supplementary
Section 7. Subsequently, the task state observations s, which include
positions of end-effector, objects and goals, are combined with the
current task’s language embedding I and sent to the task inference
encoder. Following that, the generated inference results z are fitted by
the DPMM within the knowledge space. The inferred results from the
same task are clustered and stored within the same components in the
DPMM, enabling knowledge preservation in our framework. When deal-
ing with data samples from new task distributions, the DPMM can create
new components to accommodate them, thereby separating them from
existing clusters and supporting continual knowledge accumulation
during agent lifelong learning. Simultaneously, the generative module
reconstructs the language embeddings and predicts the dynamic
function of the current task. This enables disentangled parameter
updates between upstream and downstream modules. Moreover, an
ablation study in Supplementary Section 3.4 demonstrates that the
generative module plays a crucial role in stabilizing the lifelong learning
process. For the downstream policy module defined in Fig. 5a, we utilize
the SAC45 as a concrete policy learning module, where the critics
calculate the action value function Q(st, at, zt) and the actor provides the
corresponding action patterns at to accomplish the tasks. The inferred

task results are conditioned as part of downstream inputs, contribut-
ing to more precise action pattern learning. The detailed structures
of individual modules are introduced in Supplementary Section 4.

Deployment. After training in simulation environments, we imple-
ment our trained agent onto a real-world KUKA manipulator to build
up an embodied lifelong learning agent. The real-world deployment
overview is illustrated in Fig. 5b, where the framework includes two
primary components: the embodied agent software side and the
real-world hardware side. On the software side, we deploy the trained
task encoder, DPMM and downstream actor to create the embodied
agent. In the real-world demonstration, we utilize an online encoding
approach, where human commands are processed and encoded as lan-
guage embeddings to execute each task. This set-up reflects real-world
usage, allowing users to issue verbal commands directly to the robot.
For the hardware side, our agent’s physical body comprises a KUKA iiwa
with a Robotiq 2F85 gripper. In addition, we utilize a global RealSense
camera at the table edge to capture object positions via AprilTags.
Later, the task-related goal position is determined by the initial posi-
tion of the detected object and the corresponding side information
context. Python-based robot operating system controls the movement
of the KUKA, with a system frequency of 20 Hz. We limit the total work
steps of a single-task trajectory to 150, maintaining consistency with
simulation environments. To ensure smooth communication between
the software and hardware control, we employ two transformation
modules, namely, ‘Sim2Real’ and ‘Real2Sim’. These modules serve
similar purposes, including safety control checks, coordinate frame
transformation between simulation and the real world, hand-to-eye
calibration, and camera offset set-up. A detailed experiment set-up
for both simulation and deployment can be found in Supplementary
Section 5. Moreover, we provide Supplementary Video 4 to introduce
the implementation details of our framework for both training and
deployment processes.

Language embedding. The manipulation tasks performed by a robot
arm show a natural tendency towards a limited set of action patterns.
On the one hand, tasks like ‘push the teacup from left to right’ and
‘open the window in a horizontal direction’ may differ in their language
description, but their actual action patterns might share similar trajec-
tories. This similarity can pose challenges during agent training, lead-
ing to inaccurate action patterns and/or misoperations in real-world
performance. On the other hand, although such task-related contex-
tual information (or side information) is often available in real-world
scenarios (for example, between human communication), it is fre-
quently overlooked in conventional reinforcement learning methods
and is difficult to provide to the embodied agent without encoding
of a LLM. By leveraging advancements in LLMs3,31, our embodied LRL
agent becomes more adept at utilizing this side information, like
natural language-based task descriptions, to acquire generalizable
skills and facilitate knowledge transfer among tasks22. In this study,
we capture natural language side information through an external
speech-recognition device. We adopt a human-in-the-loop approach
to guide the embodied agent in real-world tasks. In our case, we
employ one of the state-of-the-art pre-trained LLMs, RoBERTa31, to
encode the side information about manipulation tasks into language
embeddings. Subsequently, these embeddings are conditioned with
state observations and provided to the agent, aiding in accurate
task inference and improving its execution of corresponding action
patterns.

Observation space. The state observation space includes the
end-effector position (three dimensions), the object pose (six dimen-
sions) and the goal positions (three dimensions). We encode the
language side information related to the task context with a pre-trained
RoBERTa model, whose output has 768 dimensions.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 265

Article https://doi.org/10.1038/s42256-025-00983-2

Action space. The action space contains four dimensions, including
the movement of the end-effector tip (units expressed in metres) and
the open distance of the gripper. The upper and lower bounds for each
dimension of action space are limited within the range [−1.00, +1.00].

Reward. Our designed scenarios involve goal-based manipulation
tasks where success is determined by bringing the target object
within a specified goal range. To comprehensively evaluate action
patterns, the global reward for tasks is divided into distinct compo-
nents. These components include rewards for reaching, grasping,
pushing, pulling and pressing objects to achieve the specified targets
or poses. For more details, refer to Supplementary Section 8.

Optimization. Both the upstream task inference module and down-
stream policy learning module are trained using Adam optimizers,
and we reset the intrinsic parameters of optimizers before initiating
the training on every new incoming task.

Metrics
Recent works in the conventional multi-task or meta-learning-
based approaches often rely on metrics based on reward and/or
success rate to evaluate agent performance. However, in the context
of LRL, typical questions still remain unclear, including how much the
agent may forget the previously acquired knowledge after training
on subsequent tasks, or to what extent the previously acquired
knowledge can aid the subsequent ones. Therefore, it becomes
necessary to employ additional metrics that capture the unique
characteristics of lifelong learning fashion. In our study, in addition
to the success rate, we adopt two well-used metrics to access our
proposed LRL framework, namely, ‘forgetting’ and ‘forward transfer’.
To further evaluate the performance of few-shot knowledge recall, we
employ a normalized ‘improvement’ metric to quantify the agent’s per-
formance. Assuming a total of N tasks, and considering that the agent
undergoes training for each task over a span of Δ steps, the cumulative
global training duration across all N tasks amounts to T = N × Δ steps.

Average success rate. In our study, as all our environments are
goal-based manipulation tasks, we select the task’s success rate as
one of the evaluation metrics. Here, Pi(t) signifies the success rate of
task i at time step t. The values Pi(Δ(i − 1)) and Pi(Δi) denote the success
rates of task i before and after training on the same task, respectively.
The overall average performance on all N tasks is calculated as follows:

P(t) ∶ 1
N

N
∑
i=1

Pi(t). (1)

Notably, P is constrained within the range [0, 1]. We also employ P(T)
for the final evaluation, particularly for the purpose of hyperparameter
optimization and ablation study. A higher value of P corresponds to
an improved performance. Moreover, we also consider the episode
rewards as one of our metrics, for more details related to the rewards
comparison, refer to Supplementary Sections 1 and 2.

Forgetting. This metric quantifies how much knowledge is forgotten
after the agent is trained on subsequent tasks. Drawing upon recent
research contributions6,46, we introduce the forgetting (F) to assess the
agent’s capacity to preserve knowledge within a continuous stream of
tasks. Specifically, Fi is calculated by subtracting the final success rate
of task i, denoted as Pi(T), from the success rate of task i after training
on the task itself, represented as Pi(Δi). The overall forgetting metric
is computed as follows:

Fi = (Pi(∆ i) − Pi(T)) ,

F = 1
N−1

N−1
∑
i=1

Fi.
(2)

Notably, evaluating the forgetting of the most recently encountered
task carries limited significance. Therefore, we consider only the first
N − 1 tasks for this calculation. The forgetting metric is constrained
within the range F ∈ [−1, 1]. When F > 0 represents that the agent may
have lost knowledge of prior tasks. Conversely, when F < 0, the back-
wards transfer occurs, signifying that training on subsequent tasks j
(with i < j ⩽ N) has led to an improvement in performance on prior
tasks i. For the F, a lower value indicates superior performance.

Forward transfer. Forward transfer (FT) assesses the extent to which
previous tasks contribute to the learning of new ones. Inspired by
recent works1,6, we define the zero-shot forward transfer metric as
follows:

FTi =
1

i−1

i−1
∑
k=1

Pk(∆k),

FT = 1
N−1

N
∑
i=2
FTi.

(3)

Here, the metric range is constrained to FT ∈ [0, 1], where the forward
transfer for the 𝑖-th task is calculated as the average performance across
tasks from 𝑘 = 1 to 𝑘 = 𝑖− 1. It is important to emphasize that evaluating
the first task holds no meaningful significance. Thus, we consider a
total of N − 1 subsequent tasks for this assessment. A higher value in
this metric indicates that knowledge acquired from earlier tasks aids
the agent in enhancing its performance on subsequent tasks, reflecting
better performance.

Improvement of few-shot knowledge recall. To quantify the improve-
ment statistics in few-shot knowledge recall, we calculate the improve-
ment percentage for each task as follows. First, we computed the integral
of the agent’s success rate of selected two loops for each task. We then
subtracted the integral from the earlier loop from the subsequent loop
and normalized the difference. This normalized value, denoted as f (in
the range [−1, 1]), serves as our evaluation metric for few-shot improve-
ment. A higher value indicates better performance during the subse-
quent loops compared with the earlier access, whereas a lower value
suggests the opposite. The specific calculation is detailed in equation (4):

f = 1
T × Pmax

(∫
T j

t j

P(t)dt −∫
Ti

ti
P(t)dt) , (4)

where Pmax indicates the best performance value that the agent can
acquire (in our case, the success rate with 1.0), P(t) denotes the per-
formance value over time, and t and T are the lower and upper bounds,
respectively, of training steps with j > i.

Non-parametric knowledge space
In this section, we present our non-parametric knowledge space from
two aspects. First, we introduce the mathematical theory behind the
Dirichlet process mixture model. Following that, we introduce an
online variational inference method of DPMM that is used to update
the model parameters.

Dirichlet process mixtures. Bayesian non-parametric models are a
class of models that allow for flexible modelling of complex data struc-
tures without making strict assumptions about the underlying distribu-
tion of the data. Unlike Bayesian parametric models (for example,
Gaussian mixtures), which have a fixed number of parameters, Bayesian
non-parametric models have a potentially infinite number of param-
eters that are determined by the data. Bayesian non-parametric models
are typically based on probabilistic models that involve prior distri-
butions over model parameters. Such prior distributions are often
chosen to be flexible and allow for infinite-dimensional parameter
spaces. This allows the model to adapt to the underlying structure of

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 266

Article https://doi.org/10.1038/s42256-025-00983-2

the data, whether it is simple or complex. One of the typical non-
parametric models is the Dirichlet process mixture model, whose
parameters are determined through the Dirichlet process. The Dirichlet
process is a probability distribution over probability distributions. It
is used in Bayesian non-parametric to model data when the number of
groups or clusters is not known a priori. Let G be a random probability
measure, ℋ be a base probability distribution from a parameter space
Θ, and α be a positive real-valued scalar named concentration param-
eter. Then, G is said to be drawn from a Dirichlet process (DP) with α
and ℋ , denoted as G ∼ DP (α,ℋ) . To generate the samples from a
Dirichlet process, a method called the stick-breaking process is
employed (Supplementary Section 10).

DPMM serves as a prominent model in the Bayesian non-parametric
domain that is used to capture an infinite mixture of clusters for model-
ling a set of observations x = x1:N. Unlike finite mixture models in the
Bayesian parametric domain, the number of components in DPMM is
not predefined, but rather determined by the observations in an online
fashion. In DPMM, each data xi is sampled from a distribution ℱ(θi),
where θi represents a latent variable independently drawn from a Dir-
ichlet process prior G-based base distribution. A Dirichlet process prior
introduces discreteness and clustering properties by allowing θi to take
on repeated values. Consequently, all data points drawn with the same
value of θi form a cluster, resulting in the natural clustering of observa-
tions. The active number of cluster components is determined by the
number of unique values of θi, which can be dynamically inferred based
on the observed data. To assign data points to clusters, each point is
associated with an assignment variable vi. This variable takes on the
value k with probability πk, which is drawn from a categorical distribu-
tion (Cat). The generative process of DPMM can be expressed using
the stick-breaking process (Supplementary Section 10.1), where the
mixing proportions π can also be equivalently expressed as sampled
from a generalized Ewens distribution (GEM). Specifically, the genera-
tive process of DPMM can be represented as follows:

θ∗k |λ ∼ ℋ(λ),

π|α ∼ GEM (α),

vi|π ∼ Cat (π),

xi|vi ∼ ℱ(θ∗vi).

(5)

Variational inference. In this study, we focus on a variational
inference-based method to estimate the true posterior of data, as
they tend to offer faster and more scalable solutions compared with
sampling-based methods. The fundamental concept behind variational
inference is to transform the inference problem into an optimization
problem. Subsequently, the aim is to uncover the underlying joint prob-
ability distribution of the unknown parameters, allowing us to explore
their implicit relationships. In the case of the DPMM, as described in
equation (5), the joint probability distribution of its parameters can
be expressed as follows:

p(x,v,θ,β) =
N
∏
n=1

ℱ(xn|θvn)Cat (vn|π(β))
∞
∏
k=1

ℬ(βk|1,α)ℋ(θk|λ), (7)

where ℬ is stick-breaking process probability and βk are corresponding
random variables. As the true posterior p(v, θ, β∣x) is intractable, the
objective is to identify the optimal variational distribution q*(v, θ, β)
that minimizes the Kullback–Leibler (KL) divergence from the exact
conditional distribution. Instead of directly minimizing the KL diver-
gence, we maximize the evidence lower bound (ELBO) which includes
the expected log-likelihood of the data 𝔼𝔼𝔼logp(x|v,θ,β)] and the KL
divergence between two priors 𝕂𝕂𝕂𝕂(q(v,θ,β)||p(v,θ,β)). Here, we have
(Supplementary Section 10.2):

ELBO (q) = 𝔼𝔼𝔼logp(x|v,θ,β)] − 𝕂𝕂𝕂𝕂(q(v,θ,β)||p(v,θ,β)). (8)

In the context of DPMM, grounded in the concept of variational infer-
ence, we formulate the variational distribution q under the mean-field
assumption, where each latent variable possesses its variational fac-
tor, and these factors are considered independent from one another.
Specifically, we have:

q(v,θ,β) =
N
∏
n=1

q(vn| ̂rn)
K
∏
k=1

q(βk|α̂k1 , α̂k0)q(θk|λ̂k),

=
N
∏
n=1
Cat(vn| ̂rn1∶nK)⏟⎵⎵⎵⏟⎵⎵⎵⏟

qvn

K
∏
k=1

ℬ(βk|α̂k1 , α̂k0)⏟⎵⎵⎵⏟⎵⎵⎵⏟
qβk

ℋ(θk|λ̂k)⏟⎵⏟⎵⏟
qθk

,
(9)

where qvn is a categorical factor with variational parameters ̂rnk, qβk is a
factor for stick-breaking proportion with parameters α̂k0 , α̂k1, and qθk
is a base distribution factor with parameters λ̂k. In the context of vari-
ational inference, it is fundamental to recognize that the true posterior
distribution is inherently infinite, and obtaining an exact representa-
tion is unfeasible, hence necessitating approximations. However, by
augmenting the number of components K within the categorical factor,
we can enhance the optimization of the ELBO objective, leading to a
variational distribution that closely approximates the infinite
posterior. To maintain computational tractability, we restrict the cat-
egorical factor to a finite set with K components (q(vn = k) = 0 for k > K),
ensuring that K is sufficiently large to encompass all potential features.
Furthermore, we explore a specific scenario in which both the base
distribution ℋ and the cluster component distribution ℱ come from
the exponential family. Hughes and Sudderth30 illustrated that in this
context, it is possible to formulate the ELBO in terms of the expected
mass ̂Nk and the expected sufficient statistic sk(x) associated with each
component k:

ELBO (q) =
K
∑
k=1

[𝔼𝔼q𝔼θk]
⊤sk(x) − ̂Nk𝔼a(θk)] + ̂Nk𝔼logπk(β)] −

N
∑
n=1

̂rnk log ̂rnk

+𝔼𝔼q [log
ℬ(βk |1,α)

q(βk |α̂k1 ,α̂k0)
] + 𝔼𝔼q [log

ℋ(θk |λ)
q(θk |λ̂k)

]] .
(10)

Subsequently, each variational factor can be iteratively updated inde-
pendently. In the initial stage, we perform updates on the local vari-
ational parameters ̂rnk within qvn for each clustering assignment.
Following this step, we advance to the update of the global parameters
within the stick-breaking factor qβk and the base distribution factor
qθk. We employ this coordinate ascent method to iteratively optimize
the local and global parameters with the objective of maximizing the
ELBO. The computation of the summary statistics ̂Nk and sk(x) requires
accessing the complete dataset. In the case of large datasets, a
batch-based approach known as memoVB30 is employed. This
approach breaks down the summary statistics of the full data into a
summation of the summary statistics of each batch. The
non-parametric nature of the DPMM allows for flexibility in adapting
to varying numbers of clusters. This characteristic enables the devel-
opment of heuristics for dynamically adding or removing clusters,
which proves beneficial in avoiding local optima when utilizing
batch-based variational inference methods. For detailed derivations,
refer to Supplementary Section 10.2.

MemoVB incorporates birth and merge moves to facilitate
dynamic cluster adjustment. To create new clusters, poorly described
subsamples x′ from one existing cluster are collected as they pass
through each batch, and a separate DPMM model with K′ initial clus-
ters is fitted. Assuming that the active number of clusters before the
birth move is K, the acceptance or rejection of new cluster proposals
is determined by comparing the result of assigning x′ to K + K′ with
that of assigning x′ to K. In addition to the birth move, a merge move
can potentially combine a pair of clusters into one. The decision to
merge two clusters is based on whether the merge improves the ELBO

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 267

Article https://doi.org/10.1038/s42256-025-00983-2

objective, resulting in K − 1 clusters after the merge30. By integrating
with this online inference method, the DPMM can consistently preserve
the gained knowledge in the knowledge space from a theoretically
endless stream of data, where the features or knowledge within it may
steadily grow. For more details, refer to Supplementary Section 10.3.

Upstream task inference
In this section, we introduce the derivations behind our upstream
task inference module (Fig. 5a). We start with the knowledge inference
and preservation process of our knowledge space. Subsequently, we
introduce the generative process of upstream modules that enable the
disentangled and stabilized learning process.

Knowledge inference and preservation. To enable simulta neous
knowledge inference and preservation in the knowledge space, we
employ a DPMM + memoVB that was introduced in the previous
section. The DPMM + memoVB has the advantage of being able to
cluster a potentially infinite number of features based on the obser-
vations, while dynamically adapting to fit the number, shape and
density of individual components. This dynamic adaptability holds
great potential for preserving knowledge in a continuous stream
of tasks.

Our framework employs an alternating optimization scheme
to eliminate the necessity of fitting a new DPMM from scratch every
time. First, we update the DPMM module using the inference result zi,
which are sampled from the task encoder. Each update of the DPMM
module takes place after certain training steps of the task encoder and
generative module. Then, with the DPMM module fixed, we update
the task encoder by minimizing the KL divergence, using the assigned
clusters to each zi.

When updating the parameters of the DPMM, we perform fitting
on the task inference result zi obtained from the task encoder. Consider
a set of state inputs {xxxi}

n
i=1 ∈ X with xi = (si, Ii), the DPMM module in the

knowledge space learns: (1) the inference results zi and corresponding
mapping between xi and zi; (2) the number of K active components and
their parameters {μk,Σk}k=1∶K; and (3) the cluster assignment vi of each
input, where vi ∈ {1, …, K}. The cluster assignments of inference results
are determined jointly by the latent representation and the DPMM
components. In each update, we initialize the DPMM with the param-
eters learned from the previous updates and apply it to new samples
generated by the updated task encoder. This enables us to update the
same DPMM while incorporating the latest changes in the knowledge
space mappings.

During the training of the task inference module, we aim to mini-
mize both the generative loss ℒgen and the KL divergence loss ℒKL in a
joint manner. ℒgen measures the error between the original inputs x
and the generated samples x*. Meanwhile, ℒKL represents the KL diver-
gence between task encoder distribution and knowledge clustering
components. To compute ℒKL, we first obtain the cluster assignment
vi = k of each task inference results zi from the current DPMM. Using
the DPMM, we determine the mean and covariance of the assigned
cluster k, denoted as μk and Σk respectively. Following that, the ith
inference result assigned to the component k, which is represented as
zik, is generated through the reparametric trick47. Notably, the hard
assignment between the inference result and corresponding cluster
component in knowledge space may lead to incorrect assignments for
certain samples, resulting in errors when calculating the KL divergence.
To address this issue, we propose the use of a soft assignment, in which
we compute the probability pik of assigning the zi to cluster k using the
DPMM, considering all possible components k ∈ {1, 2, …, K}. As a result,
the KL divergence is defined as a weighted sum, taking into account
the probabilities of each cluster assignment:

ℒKLi =
K
∑
k=1

pikℒKLik , (11)

where ℒKLik indicates the KL divergence between the distribution of
task encoder output and component k in DPMM, and pik represents
the probability of zi assigned to cluster component k. While more
sophisticated weighting strategies can be employed, our empirical
findings suggest that simple weighting based on probabilities is effec-
tive. For detailed derivations, refer to Supplementary Section 11.1.

Generative process. In our framework, we employ a generative module
at the upstream level to facilitate a disentangled and stabilized learning
process. The generative module includes two distinct components:
the language embedding generation, denoted as pθ(It∣zt), and
the dynamic prediction model for corresponding manipulation task,
represented as pθ(st+1∣st, at, zt). Each component is interpreted by a
separate multilayer perception module with general parameters θ
∈ {θembed, θdynamics}. The detailed structures of our proposed generative
modules are presented in Supplementary Figs. 18 and 19. During the
training process, the language embedding decoder takes only the
task inference results zt as inputs and generates the language
embedding tokens, donate as I*. These tokens are then combined with
the original inputs I to compute the overall similarity using the sum
of mean squared error as the side information loss function, denoted
as ℒembed. Furthermore, the dynamics prediction module models the
state transition function by taking the current state observation st,
normalized action vector at, and latent variables as inputs to generate
the expected state observation at the next step, denoted as s∗t+1.
By comparing this prediction with the actual next observation st+1,
we obtain the loss function for dynamic prediction, which is
represented by ℒdyn. Meanwhile, with normalization in each input
dimension, we can stabilize the overall training process. Following that,
the total loss of the upstream task inference module is calculated
as follows:

ℒ = ζℒdyn + ηℒembed⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
ℒgen

+ξℒKL. (12)

with ζ and η representing the weighting factors for each loss function
term, which regulate the importance of each generative module. ξ
represents the disentangled factor of the KL divergence term. In sum-
mary, the generation module facilitates a disentangled learning process
unaffected by downstream policy training. This set-up stabilizes the
exploration process of the downstream policy module, particularly
during the initial steps of each task where noise is inevitable. Simulta-
neously, regenerating language embeddings and modelling the state
transition function contribute to the agent learning more accurate
action patterns for individual manipulation tasks. For detailed deriva-
tions of the loss functions related to the generative process, refer to
Supplementary Section 11.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions are present in the article
and the Supplementary Information. Microsoft Excel (Version 2405,
Build 17628.20110, 64-bit) was utilized to analyse, interpret and sum-
marize the statistical results. The source data used to present this work
are available on Zenodo at https://doi.org/10.5281/zenodo.14265089
(ref. 48) or via GitHub at https://github.com/Ghiara/LEGION.

Code availability
The code used for training and evaluation, which supports the conclu-
sions of this study, is publicly available via Zenodo at https://doi.org/
10.5281/zenodo.14265089 (ref. 48) or via GitHub at https://github.
com/Ghiara/LEGION.

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.14265089
https://github.com/Ghiara/LEGION
https://doi.org/10.5281/zenodo.14265089
https://doi.org/10.5281/zenodo.14265089
https://github.com/Ghiara/LEGION
https://github.com/Ghiara/LEGION

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 268

Article https://doi.org/10.1038/s42256-025-00983-2

References
1. Khetarpal, K., Riemer, M., Rish, I. & Precup, D. Towards continual

reinforcement learning: a review and perspectives. J. Artif. Intell.
Res. 75, 1401–1476 (2022).

2. Croitoru, F.-A., Hondru, V., Ionescu, R. T. & Shah, M. Diffusion
models in vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell.
45, 10850–10869 (2023).

3. Achiam, J. et al. GPT-4 technical report. Preprint at https://arxiv.
org/abs/2303.08774 (2023).

4. Zhao, J. et al. Autonomous driving system: a comprehensive
survey. Expert Syst. Appl. 242, 122836 (2024).

5. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M. & Tuytelaars,
T. Memory aware synapses: learning what (not) to forget. In Proc.
European Conference on Computer Vision (ECCV) 139–154 (2018).

6. Chaudhry, A., Dokania, P. K., Ajanthan, T. & Torr, P. H. Riemannian
walk for incremental learning: understanding forgetting and
intransigence. In Proc. European Conference on Computer Vision
(ECCV) 532–547 (2018).

7. Chen, Z. & Liu, B. Lifelong Machine Learning Vol. 1 (Springer
Nature, 2022).

8. Delange, M. et al. A continual learning survey: sefying forgetting
in classification tasks. In IEEE Transactions on Pattern Analysis and
Machine Intelligence 1–1 (IEEE, 2021).

9. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural
networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

10. Nguyen, C. V., Li, Y., Bui, T. D. & Turner, R. E. Variational continual
learning. In Proc. 6th International Conference on Learning
Representations (OpenReview.net, 2018).

11. Mallya, A. & Lazebnik, S. PackNet: adding multiple tasks to a
single network by iterative pruning. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition 7765–7773 (IEEE, 2018).

12. Fernando, C. et al. PathNet: evolution channels gradient
descent in super neural networks. Preprint at https://arxiv.org/
abs/1701.08734 (2017).

13. Rosenfeld, A. & Tsotsos, J. K. Incremental learning through deep
adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 42, 651–663
(2018).

14. Chaudhry, A., Ranzato, M., Rohrbach, M. & Elhoseiny, M. Efficient
lifelong learning with A-GEM. In Proc. 7th International Conference
on Learning Representations (OpenReview.net, 2019).

15. Lopez-Paz, D. & Ranzato, M. Gradient episodic memory for
continual learning. In Advances in neural information processing
systems (eds Guyon, I. et al.) Vol. 30 (Curran Associates, Inc.,
2017).

16. Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. iCaRL:
incremental classifier and representation learning. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
2001–2010 (IEEE, 2017).

17. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S.
Continual lifelong learning with neural networks: a review. Neural
Netw. 113, 54–71 (2019).

18. Yu, T. et al. Meta-world: a benchmark and evaluation for multi-task
and meta reinforcement learning. In Proc. Conference on Robot
Learning 1094–1100 (PMLR, 2020).

19. Vithayathil Varghese, N. & Mahmoud, Q. H. A survey of multi-task
deep reinforcement learning. Electronics 9, 1363 (2020).

20. Yu, T. et al. Gradient surgery for multi-task learning. Adv. Neural
Inf. Process. Syst. 33, 5824–5836 (2020).

21. Yang, R., Xu, H., Wu, Y. & Wang, X. Multi-task reinforcement
learning with soft modularization. Adv. Neural Inf. Process. Syst.
33, 4767–4777 (2020).

22. Sodhani, S., Zhang, A. & Pineau, J. Multi-task reinforcement
learning with context-based representations. In Proc. 38th
International Conference on Machine Learning 9767–9779 (PMLR,
2021).

23. Perez, E., Strub, F., De Vries, H., Dumoulin, V. & Courville, A. FiLM:
visual reasoning with a general conditioning layer. In Proc. AAAI
Conference on Artificial Intelligence 32 (AAAI, 2018).

24. Borsa, D., Graepel, T. & Shawe-Taylor, J. Learning shared
representations in multi-task reinforcement learning. Preprint at
https://arxiv.org/abs/1603.02041 (2016).

25. Bing, Z., Lerch, D., Huang, K. & Knoll, A. Meta-reinforcement
learning in non-stationary and dynamic environments. IEEE Trans.
Pattern Anal. Mach. Intell. 45, 3476–3491 (2022).

26. Rakelly, K., Zhou, A., Finn, C., Levine, S. & Quillen, D. Efficient
off-policy meta-reinforcement learning via probabilistic
context variables. In Proc. 36th International Conference on
Machine Learning, Proc. Machine Learning Research Vol. 97 (eds
Chaudhuri, K. & Salakhutdinov, R.) 5331–5340 (PMLR, 2019).

27. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on
Machine Learning 1126–1135 (PMLR, 2017).

28. Melo, L. C. Transformers are meta-reinforcement learners In Proc.
39th International Conference on Machine Learning, Proc.
Machine Learning Research Vol. 162 (eds Chaudhuriet, K. et al.)
15340–15359 (PMLR, 2022).

29. Nam, T., Sun, S.-H., Pertsch, K., Hwang, S. J. & Lim, J. J. Skill-based
meta-reinforcement learning. In Proc. 10th International
Conference on Learning Representations (OpenReview.net, 2022).

30. Hughes, M. C. & Sudderth, E. Memoized online variational
inference for dirichlet process mixture models. Adv. Neural Inf.
Process. Syst. 26, (2013).

31. Liu, Y. RoBERTa: a robustly optimized bert pretraining approach.
Preprint at https://arxiv.org/abs/1907.11692 (2019).

32. Chaudhry, A., Gordo, A., Dokania, P., Torr, P. & Lopez-Paz, D. Using
hindsight to anchor past knowledge in continual learning. Proc.
AAAI Conf. Artif. Intell. 35, 6993–7001 (2021).

33. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. & Wayne,
G. Experience replay for continual learning. In Proc. 33rd
International Conference on Neural Information Processing
Systems 350–360 (Curran Associates Inc., 2019).

34. Kudithipudi, D. et al. Biological underpinnings for lifelong learning
machines. Nat. Mach. Intell. 4, 196–210 (2022).

35. Hadsell, R., Rao, D., Rusu, A. A. & Pascanu, R. Embracing change:
continual learning in deep neural networks. Trends Cogn. Sci. 24,
1028–1040 (2020).

36. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal
ensemble memories during sleep. Science 265, 676–679 (1994).

37. Ji, D. & Wilson, M. Coordinated memory replay in the visual cortex
and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

38. Rasch, B. & Born, J. Maintaining memories by reactivation. Curr.
Opin. Neurobiol. 17, 698–703 (2007).

39. Lee, J. L. Memory reconsolidation mediates the strengthening
of memories by additional learning. Nat. Neurosci. 11, 1264–1266
(2008).

40. Jacoby, L. L. & Bartz, W. H. Rehearsal and transfer to LTM. J. Verbal
Learning Verbal Behav. 11, 561–565 (1972).

41. Dark, V. J. & Loftus, G. R. The role of rehearsal in long-term
memory performance. J. Verbal Learning Verbal Behav. 15,
479–490 (1976).

42. Ma, Y. J. et al. Eureka: human-level reward design via coding
large language models. In Proc. 12th International Conference on
Learning Representations (OpenReview.net, 2024).

43. Ma, Y. J. et al. DrEureka: language model guided sim-to-real
transfer. In Robotics: Science and Systems (RSS) (2024).

44. Yu, W. et al. Language to rewards for robotic skill synthesis. In
Proc. 7th Conference on Robot Learning (eds Tan, J. et al) 374–404
(PMLR, 2023).

45. Haarnoja, T. et al. Soft actor–critic algorithms and applications.
Preprint at https://arxiv.org/abs/1812.05905 (2018).

http://www.nature.com/natmachintell
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1701.08734
https://arxiv.org/abs/1701.08734
https://arxiv.org/abs/1603.02041
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1812.05905

Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 269

Article https://doi.org/10.1038/s42256-025-00983-2

46. Wołczyk, M., Zając, M., Pascanu, R., Kuciński, Ł. & Miłoś, P.
Continual world: a robotic benchmark for continual reinforce ment
learning. Adv. Neural Inf. Process. Syst. 34, 28496–28510 (2021).

47. Higgins, I. et al. Beta-VAE: learning basic visual concepts with a
constrained variational framework. In International Conference on
Learning Representations (Poster) 3, (2017).

48. Meng, Y. et al. LEGION. Zenodo https://doi.org/10.5281/
zenodo.14265088 (2024).

Acknowledgements
This study was supported in part by the financial support from the
National Natural Science Foundation of China under grant number
U22B2042 (to F.S.), and the Bavarian State Ministry for Economic
Affairs, Regional Development and Energy (StMWi) for the Lighthouse
Initiative KI.FABRIK (Phase 1: Infrastructure as well as the research and
development programme under grant number DIK0249, to A.K.).

Author contributions
Y.M., Z.B., X.Y., K.C., K.H., Y.G., F.S. and A.K. developed the framework
and performed all experiments. Y.M., Z.B. and X.Y. completed the
manipulator deployment. Y.M., Z.B., X.Y., K.C., K.H., Y.G., F.S. and A.K.
wrote the paper together. Y.M., X.Y. and K.C. prepared real-world
models. K.H., F.S. and A.K. provided funding.

FundingInformation
Open access funding provided by Technische Universität München.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-025-00983-2.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-025-00983-2.

Correspondence and requests for materials should be addressed to
Zhenshan Bing, Kai Huang, Yang Gao or Fuchun Sun.

Peer review information Nature Machine Intelligence thanks
Guangliang Li, and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.14265088
https://doi.org/10.5281/zenodo.14265088
https://doi.org/10.1038/s42256-025-00983-2
https://doi.org/10.1038/s42256-025-00983-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00983-2

Extended Data Fig. 1 | t-SNE projections of buffer data inference results after
each base task training. The data is randomly sampled from the buffer and fed
into the task encoder to do the inference. In the buffer we reserve a place for
only three tasks, the new incoming inputs will overwrite the earliest data in the
buffer. We use this method to force the agent to pause on the corresponding task
for a period of time and evaluate its few-shot performance in the subsequent

loops (few-shot revisit and knowledge recall). The DPMM dynamically adjusts its
knowledge clustering components using the ‘birth’ and ‘merge’ heuristics, fitting
model parameters based on observed data. This approach eliminates the need to
predetermine or set any assumptions about the number of tasks the agent may
encounter.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00983-2

Extended Data Table 1 | The average success rate for each proposed manipulation task in the real-world setup

Each data point is calculated based on three real-world trials, and we report the average value for comparison.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00983-2

Extended Data Table 2 | Improvement percentage (%) from the few-shot evaluation

The values are computed using equation (4) from the main text.

http://www.nature.com/natmachintell

	Preserving and combining knowledge in robotic lifelong reinforcement learning
	Results
	Manipulation performance
	Long-horizon tasks
	Stream of tasks

	Knowledge preservation
	Visualization
	Statistics
	Few-shot knowledge recall

	Discussion
	Methods
	Training and deployment
	Training
	Deployment
	Language embedding
	Observation space
	Action space
	Reward
	Optimization

	Metrics
	Average success rate
	Forgetting
	Forward transfer
	Improvement of few-shot knowledge recall

	Non-parametric knowledge space
	Dirichlet process mixtures
	Variational inference

	Upstream task inference
	Knowledge inference and preservation
	Generative process

	Reporting summary

	Acknowledgements
	Fig. 1 Concept illustration of robotic LRL process.
	Fig. 2 Performance on real-world single tasks.
	Fig. 3 t-SNE snapshots of knowledge space.
	Fig. 4 Evaluation of replay’s contribution in knowledge recall.
	Fig. 5 LEGION framework overview for training and deployment.
	Extended Data Fig. 1 t-SNE projections of buffer data inference results after each base task training.
	Table 1 Statistics of individual task success rate with easy-to-hard task ordering.
	Extended Data Table 1 The average success rate for each proposed manipulation task in the real-world setup.
	Extended Data Table 2 Improvement percentage (%) from the few-shot evaluation.

