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Preserving and combining knowledge in 
robotic lifelong reinforcement learning
 

Yuan Meng    1,5, Zhenshan Bing    1,2,5 , Xiangtong Yao    1,5, Kejia Chen1, 
Kai Huang3 , Yang Gao2 , Fuchun Sun4  & Alois Knoll1

Humans can continually accumulate knowledge and develop increasingly 
complex behaviours and skills throughout their lives, which is a capability 
known as ‘lifelong learning’. Although this lifelong learning capability is 
considered an essential mechanism that makes up general intelligence, 
recent advancements in artificial intelligence predominantly excel in 
narrow, specialized domains and generally lack this lifelong learning 
capability. Here we introduce a robotic lifelong reinforcement learning 
framework that addresses this gap by developing a knowledge space 
inspired by the Bayesian non-parametric domain. In addition, we enhance 
the agent’s semantic understanding of tasks by integrating language 
embeddings into the framework. Our proposed embodied agent can 
consistently accumulate knowledge from a continuous stream of one-time 
feeding tasks. Furthermore, our agent can tackle challenging real-world 
long-horizon tasks by combining and reapplying its acquired knowledge 
from the original tasks stream. The proposed framework advances our 
understanding of the robotic lifelong learning process and may inspire the 
development of more broadly applicable intelligence.

Humans show a remarkable ability for lifelong learning by consistently 
acquiring knowledge and adapting to new task scenarios throughout 
their lives. This involves the constant and incremental development of 
increasingly complex behaviours, recognized as a crucial mechanism 
for achieving general intelligence. Recent advancements in artificial 
intelligence have showcased agents achieving remarkable perfor-
mance across a wide range of tasks1, such as image generation2, article  
writing3 and autonomous driving4. However, even though current 
methodologies yield impressive outcomes, they primarily focus on 
agents specialized in narrowly distributed tasks. In contrast, untrained 
agents generally require more game-play experiences throughout their 
lifespan than humans and struggle to generalize effectively to new 
variations. One notable gap between machine-intelligent agents and 
humans is the lack of lifelong learning capability in current intelligent 
agents. Lifelong learning, also referred to as incremental or continual 

learning5–7, addresses the challenge of asynchronously acquiring knowl-
edge from a continuous stream of tasks while mitigating forgetting. Its 
primary goal is to gradually extend the accumulated knowledge and 
use it for ongoing learning tasks, thereby building more complicated 
behaviours by knowledge combination and reapplication. This study 
focuses on robotic lifelong reinforcement learning (LRL), a domain 
where reinforcement learning provides an agent–environment inter-
action framework that is well suited for exploring the learning process 
in a sequential manner. Figure 1a illustrates the training process for a 
general LRL agent in the robotic context. Given an infinite stream of 
robotic tasks, the agent continually masters the tasks one after another, 
consistently accumulating knowledge and skills.

For deep learning-based algorithms, the primary challenge when 
facing a stream of tasks is balancing the stability and plasticity1 of 
the neural networks. A common issue in this context is ‘catastrophic 
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various tasks simultaneously, this problem still persists in the sequen-
tial learning process. Furthermore, it relies on a predefined range of 
task distributions, which are often limited in scope and struggle to 
generalize when encountering novel non-parametric task variability18.  
Such variability shows qualitative distinction and cannot be adequa-
tely described by continuous parameters, as they require models  
to learn entirely new sets of rules and interactions, thus challenging 
their generalization capabilities18. Motivated by MTRL, another set 
of approaches to tackle the stability–plasticity dilemma is known as 
‘learning to learn’ or meta reinforcement learning1. Recent studies  
have provided diverse approaches that enable agents to acquire knowl-
edge across various task distributions while adapting to new tasks 
based on acquired knowledge in few-shot or zero-shot manner25–29. 
One notable example is continuous environment meta-reinforcement 
learning25, which incorporates a Gaussian mixture model in its prior 
space of task encoder, which can infer and cluster the task latent repre-
sentation at a meta level. However, the Gaussian mixture model faces 
limitations due to its reliance on a predetermined task amount, an 
assumption incompatible with the typically unknown or infinite task 
amounts in LRL.

Our study aims to develop a deep reinforcement learning frame-
work for robotic lifelong learning. The focus is on continually learning 
and preserving knowledge from a stream of one-time feeding task  
scenarios. The proposed agent shall not forget the knowledge it 
acquired and can consistently perform stably on corresponding tasks 
throughout its lifespan. Moreover, our framework is designed to handle  
more complex long-horizon tasks by effectively combining and 

forgetting’1,8. This refers to the phenomenon where the neural net-
work parameters associated with previously learned skills are rapidly 
overwritten when the agent learns new incoming tasks. Consequently, 
the agent’s performance substantially deteriorates when revisiting 
previously mastered tasks. Recent lifelong machine learning studies 
have introduced various approaches, including regularization5,9,10, 
structure modularity11–13 and experience replay14–16. These methods, 
however, have primarily been applied to static datasets in conventional 
machine learning domains such as vision task classification8,17, leaving 
their effectiveness in robotic learning unclear. Regularization can 
lead to improper parameter shifting and error accumulation, while 
structure modularity may struggle with dynamic adaptation when 
facing an unknown number of tasks. Without replay, both regulariza-
tion and structure modularity methods tend to overfit on predefined 
tasks, lacking the flexibility to adapt to new ones in lifelong learning. 
Our approach does not strictly belong to any of these categories but 
instead draws inspiration from these methods, aiming to overcome 
their limitations while leveraging their strengths.

In the context of deep reinforcement learning, a common idea to 
avoid ‘catastrophic forgetting’ is through multi-task reinforcement 
learning (MTRL)18–21. In MTRL, the agent has simultaneous access to 
all tasks during training, avoiding the forgetting problem inherent in 
deep neural networks. Recent works in this domain include contex-
tual attention-based representation learning22, soft modularization21, 
feature-wise linear modulation23 and other baselines19,20,24. However, the 
MTRL deviates from actual human learning patterns. While MTRL tries 
to avoid the issue of catastrophic forgetting by providing data from 
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Fig. 1 | Concept illustration of robotic LRL process. a, Overview illustration 
of the general LRL process. Unlike the conventional multi-task approaches, 
where agents have simultaneous access to all tasks, an LRL agent can master 
tasks sequentially, one after another. Moreover, the agent should continually 
accumulate knowledge throughout the process. This concept emulates the 

human learning process. b, Our proposed framework under the lifelong learning 
concept. We instruct the deployed embodied agent to perform long-horizon 
tasks using language commands. The agent accomplishes these tasks through 
the combination and reapplication of acquired knowledge.
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reapplying the underlying knowledge acquired from the ongoing task 
stream. This highlights its capability for incremental development of 
progressively sophisticated behaviours. To achieve the objective, we 
develop a framework inspired by the Dirichlet process mixture model 
(DPMM), a prominent model in the Bayesian non-parametric domain, 
with a memoized variational Bayes inference method (memoVB)30. This 
combination enables simultaneous task inference and asynchronous 
knowledge preservation at the upstream level. Moreover, our frame-
work utilizes natural language-based side information to assist in task 
inference. This information is encoded by a pre-trained large language 
model (LLM)31. The resulting language embedding offers the agent 
richer contextual insights into the current task scenario, contributing 
to more precise and disentangled representations in the knowledge 
space. As a result, the collaborative efforts of DPMM and language 
embeddings contribute to more accurate downstream action pattern 
learning. Furthermore, our embodied agent shows the ability to solve 
challenging, long-horizon manipulation tasks in the real world by 
combining and reapplying knowledge acquired throughout its lifelong 
learning. This showcases its potential for achieving general intelligence 
and may inspire the development of more broadly applicable intelligent 
agents. We name our proposed framework as LEGION: a Language 
Embedding-based Generative Incremental Off-policy Reinforcement 
Learning Framework with Non-parametric Bayes.

Results
In this section, we present the test results of our LEGION framework.  
We begin by demonstrating its performance in real-world manipula-
tion tasks, covering both long-horizon tasks and the original sequence  
of single-task training. Next, we assess how knowledge is preserved  
in the prior space. In addition, we provide quantitative data to evalu-
ate key aspects of LRL within our framework. Finally, we highlight  
the contribution of our non-parametric knowledge space in few-shot 
knowledge recall. The experimental set-up for both simulation  
and real-world experiments is detailed in ‘Training and deployment’ 
in Methods and Supplementary Section 5.

Manipulation performance
Long-horizon tasks. The deployment set-up of our framework is 
illustrated in Fig. 1b. To provide human commands of the task descrip-
tions, we use a speech-recognition device and a pre-trained LLM. The 
trained embodied agent receives the state observations conditioned 
with language embeddings as inputs. After receiving the observations, 
the task encoder infers the knowledge to which it should apply. Sub-
sequently, the downstream policy generates corresponding actions 
to accomplish the task. In the real-world scenario, we employ a KUKA 
iiwa robot arm as our embodiment and use a global RealSense camera  
to acquire vision information. A real-world video demonstration  
(Supplementary Video 1) showcases our embodied agent successfully 
completing the long-horizon task ‘clean the table’, which consists of 
seven sequential subtasks. Our agent accomplishes this by recom-
bining the underlying knowledge gained from the one-time feeding 
task stream (Fig. 2), illustrating its effective generalization in the face 
of diverse and challenging task distributions. This ability mirrors 
the human learning process over a lifetime and is regarded as a key 
mechanism underlying general intelligence. Conventional approaches 
to such long-horizon tasks involve relying on human demonstrations 
for direct imitation. However, these approaches often result in limited 
generalization and flexibility when confronting varied task distribu-
tions and sequences. In contrast, our framework offers flexibility 
in task execution order, allowing the agent to complete the entire 
task in any sequence through the combination and reapplication of 
acquired knowledge. To highlight the generalization and flexibility 
of our proposed framework, we reorder the subtasks randomly and 
present two additional demonstrations in Supplementary Video 2. 
As our broad task assumption includes long-horizon tasks with strict 

subtask conditions as a subset, we also demonstrate how our agent 
solves a conventional strictly conditioned long-horizon task, ‘make 
the coffee’ (Supplementary Section 3.2).

Stream of tasks. Given a stream of one-time feeding tasks, our pro-
posed LRL agent can master the task continually, one after the other, 
without forgetting previously acquired knowledge. This incremental 
learning approach mimics the natural human learning process and has 
the potential to replace, and eventually surpass, inefficient manual 
services in real-world applications. To assess the lifelong learning 
capability of our proposed agent, we implement ten distinct robotic 
manipulation tasks to build up a task stream. Our agent can gain knowl-
edge asynchronously from this stream and eventually achieve the 
given long-horizon task (Supplementary Video 1). The agent under-
goes training on each task for 1 million steps before switching to the 
next task. The task sequence follows an easy-to-hard task ordering 
(Supple mentary Section 3.1): ‘reach → push → pick–place → door open →  
faucet open → drawer close → button press → peg unplug → window 
open → window close’.

To demonstrate the performance of our proposed framework on 
its original sequence task distributions, we showcase the snapshots 
of its real-world tasks in Fig. 2, and we provide Supplementary Video 3  
of all tasks. As observed in the snapshots and video, our proposed 
embodied agent completes all tasks within the given time steps. In addi-
tion, in each real-world task, we conduct at least three trials, varying the 
initial object positions and goal positions. The average success rates 
for these trials are presented in Extended Data Table 1. To demonstrate 
stability and robustness within the given base task distributions, our 
embodied agent consistently accomplishes various manipulation 
tasks, including ‘reach’, ‘faucet open’, ‘drawer close’, ‘button press’ and 
‘window open/close’, leveraging asynchronously acquired knowledge. 
For some more challenging tasks such as ‘push’, ‘pick–place’ and ‘door 
open’, our agent can also maintain a high success rate with a score of 
at least 0.67.

Knowledge preservation
We evaluate knowledge preservation through t-distributed stochastic 
neighbor embedding (t-SNE) visualizations for intuitive understanding  
and statistical analysis for quantitative performance assessment  
during training. Furthermore, a detailed ablation study highlighting 
the contributions of our Bayesian non-parametric knowledge space 
and language embeddings is provided in Supplementary Section 3.3.

Visualization. In our framework, the task encoder initially infers the 
state inputs and generates the latent samples as inference results. Sub-
sequently, the inferred task results are fitted into the non-parametric 
knowledge space. To assess how the acquired knowledge is preserved 
and managed in its space, we use t-SNE to visualize our knowledge 
space in a two-dimensional plane. Figure 3a–e shows the projections of 
knowledge space after training on two, four, six, eight and all ten tasks, 
respectively. Each coloured group signifies a complete task trajectory 
and is assigned to a cluster component in our non-parametric knowl-
edge space. In addition, the order of these samples is represented by 
corresponding colour opacity, progressing from light to dark. Notably, 
our proposed DPMM module in the knowledge space can generate 
new components to store new task inference results when switch-
ing environments, facilitating the capability to infer and store new 
knowledge. In addition, to evaluate how our knowledge space handles 
acquired knowledge, we make the agent undertake the training loop 
twice. During the second loop, the agent revisits previously mastered 
tasks, whose knowledge has been preserved in the agent’s knowledge 
space. In this phase, the agent is expected to directly utilize the exist-
ing knowledge to complete the tasks, rather than inferring a new task 
knowledge cluster in its prior space. We present the results after the 
first loop (circle markers) and after the second loop (cross markers) 
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in Fig. 3f. The t-SNE results demonstrate that our proposed LEGION 
framework can infer and identify earlier acquired knowledge and merge 
it into existing cluster components associated with individual tasks.

Statistics. For a quantitative assessment of our proposed framework, 
we present the performance results in Table 1 of each task in both con-
ventional multi-task and lifelong training processes. The evaluation for 
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Fig. 2 | Performance on real-world single tasks. Snapshots of embodied agent on individual manipulation tasks after LRL.
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MTRL can lead to an in-depth understanding of our framework in terms 
of synchronized knowledge acquisition and preservation. In the context 
of lifelong learning, we utilize an easy-to-hard task ordering strategy, 
where the agent begins by learning fundamental tasks that serve as 
milestones for mastering more complex action patterns in subsequent 
tasks. For more details on other task ordering variations, refer to Supple-
mentary Section 3.1. We report the success rates for each task (row-wise) 
after the agent trained on a one-time feeding task stream (column-wise). 
For example, the first column from the left side represents the agent’s 
performance on all tasks after it has trained on the task ‘reach’. Further-
more, we incorporate two additional metrics to evaluate the specific 
characteristics of our lifelong learnable agent, namely, ‘forgetting’ and 
‘forward transfer’. ‘Forgetting’ is a scalar metric in the range [−1, 1], repre-
senting how much knowledge our proposed agent may forget at the end 
of its lifespan. A lower value in this metric signifies better performance. 
‘Forward transfer’, in contrast, has a range of [0, 1] that considers how 
much the earlier tasks knowledge aids the subsequent tasks, where a 
larger value indicates better performance. For more details of these met-
rics, refer to equations (2) and (3). We also report our agent’s multi-task 
performance of each task listed in the right column of the table. Each 
datum in the table is based on trials with five random seeds. The last 
row calculates the average value of the data alongside column-wise. 
As indicated in the table, after being trained on earlier tasks, the agent 
maintains its performance on corresponding tasks even when trained 

with subsequent tasks. This implies that the acquired knowledge is 
effectively preserved within the model. The average success rate gradu-
ally increases, reaching 0.84. Furthermore, our proposed framework’s 
overall average forgetting score is 0.0, showcasing its robust knowledge 
preservation capability. We observe that negative scores occur on tasks 
such as ‘door open’; this is because the subsequent learning process 
enhances performance on previously learned tasks. For instance, after 
training on ‘door open’, the agent initially achieves a success rate of 0.4 
on this task. However, after training on ‘faucet open’, the success rate 
for ‘door open’ improves to 0.8. This improvement is probably because 
the knowledge gained in understanding how to open a faucet (whether 
clockwise or anticlockwise) contributes positively to the door-opening 
task. In addition, positive forward transfer phenomena are observed in 
our agent’s lifelong learning process. Specifically, for the task ‘drawer 
close’, earlier acquired knowledge from tasks such as ‘push’, ‘pick–place’ 
and ‘door open’ contributes to the success of ‘drawer close’. For instance, 
the push and pull motions learned from previous tasks aid the agent in 
completing the drawer close task. The final average score of this metric 
is 0.10. In the context of a multi-task learning process, where the agent 
has simultaneous access to all tasks, our framework attains superior per-
formance with a final success of 0.94 (Supplementary Sections 1 and 2).

Few-shot knowledge recall. Knowledge rehearsal is a critical com-
ponent of lifelong learning. Recent studies, particularly in computer 
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Fig. 3 | t-SNE snapshots of knowledge space. a–e, t-SNE projection of knowledge 
space after training on two tasks (a), four tasks (b), six tasks (c), eight tasks (d) 
and all ten tasks (e). f, t-SNE projections after the first training loop (circle) and 

after the second loop (cross). Notably, the inference results of the second training 
loop are merged into corresponding knowledge groups that are preserved 
during the first loop.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | February 2025 | 256–269 261

Article https://doi.org/10.1038/s42256-025-00983-2

vision14,16,32,33, have shown that rehearsal effectively mitigates forgetting 
during the learning process. However, it remains unclear whether this 
technique performs as well in the robotic domain, where data are con-
tinuous and time sequential. In addition, recent biological research34–41 
suggests that knowledge rehearsal aids in consolidating long-term 
memory and improves performance through deep memory recall, 
even after extended pauses (Supplementary Section 9). Building on 
these insights, we explore how our proposed agent performs during 
few-shot knowledge recall with only intermittent replay.

To demonstrate the application and potential limitations of  
existing replay-based lifelong learning methods in robotic reinforce-
ment learning, we conduct comparison experiments against these 
baseline methods. All models use the same soft-actor–critic (SAC) 
policy, including the neural network backbone and shared hyper-
parameters. Each experiment is repeated at least five times, and the 
average success rate and standard deviation during evaluation are 
used as metrics to ensure fairness. The following baseline models are 
employed for comparison. (1) Reservoir. This baseline uses the ‘res-
ervoir’ sampling method in the buffer to approximate the empirical 
distribution of observed samples. The buffer is designed to maintain a 
maximum data ratio of 50%. Unlike our framework, this model does not 
include an upstream inference and knowledge preservation module,  
so its policy network inputs consist of only the raw task observa-
tions without the upstream inference representations. This allows 
us to assess the strengths of our proposed Bayesian non-parametric  
knowledge space in task inference, knowledge preservation and its 
impact on overall task performance. (2) Perfect memory. Based on 
the ‘reservoir’ baseline, we extend the buffer size to match the total 
training steps, meaning that all past trajectories are stored without 
being forgotten or overwritten. (3) Averaged gradient episodic memory 
(A-GEM)14 is a rehearsal-based method that treats lifelong learning  
as a constrained optimization problem. It constructs a global loss  
based on old training samples to ensure no loss of performance on 
previous tasks, projecting new sample gradients to avoid interference. 
Here for each base task, we maintain an episode memory of 10,000.

Figure 4a shows the average success rate during evaluation. As 
seen in the figure, our proposed LEGION framework consistently out-
performs other methods, demonstrating a steady increase in success 
rate as new tasks are introduced. While perfect memory maintains 

a full buffer, its success rate reaches around 0.2 throughout train-
ing, showing no obvious improvement, highlighting its limitations 
in adapting or generalizing as the task stream progresses. Similarly, 
reservoir shows a flat performance curve with no notable gains, and 
A-GEM also underperforms in our benchmark. To further illustrate the 
limitations of replay-based methods in robotic LRL, Fig. 4b visualizes 
the data ratio in the training batch. For instance, after training on the 
second task ‘push’, the data ratio for ‘push’ initially remains at around 
50%. However, as the agent moves through subsequent tasks, this ratio 
gradually decreases, eventually dropping to around 10% by the end 
of training. In contrast, in MTRL, the agent trains on individual tasks 
with a constant data ratio in the batch, ensuring stable learning condi-
tions. This gap in the data sampling process during lifelong learning 
may weaken knowledge retention and lead to overall performance 
degradation over time. Our framework addresses this challenge by 
utilizing a Bayesian non-parametric knowledge inference and cluster-
ing module, which ensures consistent knowledge preservation and 
stable performance throughout the lifelong learning process despite 
fluctuating data ratios.

To assess our agent’s knowledge-recall performance after pausing 
on tasks for a while, we selected 5 tasks from our original sequence, 
ordered from easy to hard, and trained the agent on them sequentially 
(1 million steps for each task) across 3 repeat loops: ‘reach → push → 
faucet open → button press → window close’. In the replay buffer, we 
allocated space for data from only three tasks at a time. This set-up 
means that while training on the fourth task, data from the first task are 
gradually replaced by data from the fourth, and by the time the fifth task 
is reached, replay data from the first task are no longer available. In the 
second loop, we revisit the first task and compare its performance in 
the second loop to that in the first. This process is repeated similarly for 
the other tasks during the second and third loops. Extended Data Fig. 1 
shows the t-SNE projections of the knowledge space after each task 
learning for all three loops. Figure 4c–g shows the average success rates 
for each task during the first loop (orange) and the subsequent second 
(green) and third (blue) loops. As illustrated, despite a 1 million-step 
pause for each task, the agent quickly re-masters them in the second 
and third loops, surpassing its initial performance. Our framework 
demonstrates faster convergence on all tasks during subsequent loops, 
following few-shot attempts, emphasizing the benefits of few-shot 

Table 1 | Statistics of individual task success rate with easy-to-hard task ordering

Train after

Evaluation Lifelong learning Multi-task

Reach Push Pick 
place

Door 
open

Faucet 
open

Drawer 
close

Button 
press

Peg 
unplug

Window 
open

Window 
close

Forgetting Forward 
transfer

Reach 1.00 1.00 0.80 0.80 0.80 1.00 1.00 1.00 1.00 1.00 0.00 NA 1.00

Push 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.20 0.00 0.80

Pick–place 0.00 0.00 0.80 1.00 0.80 0.80 1.00 0.60 1.00 0.80 0.00 0.00 0.80

Door open 0.00 0.00 0.00 0.40 0.80 0.80 0.60 0.40 0.80 0.60 −0.20 0.00 1.00

Faucet open 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00

Drawer close 0.00 1.00 0.80 0.80 0.00 0.60 0.80 0.80 1.00 1.00 −0.40 0.52 1.00

Button press 0.00 0.00 0.00 0.00 0.40 0.00 0.80 0.60 0.80 0.60 0.20 0.07 1.00

Peg unplug 0.00 0.00 0.00 0.00 0.00 0.20 0.00 1.00 0.60 0.60 0.40 0.03 0.80

Window open 0.00 0.00 0.40 0.00 0.60 0.00 0.20 0.00 0.80 1.00 −0.20 0.15 1.00

Window close 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.40 0.40 1.00 NA 0.13 1.00

Average 0.10 0.30 0.38 0.40 0.54 0.58 0.64 0.66 0.82 0.84 0.00 0.10 0.94

In LRL, we assess the performance of all tasks (row-wise) once the agent completes training on each one-time feeding task (column-wise). In multi-task reinforcement learning, the agent 
is evaluated after simultaneous training on all tasks (row-wise). Each datum is based on at least five trials, with average values reported for evaluation. The metrics ‘forgetting’ and ‘forward 
transfer’ are used to assess the specific characteristics of the LRL agent. ‘Forgetting’, in the range [−1, 1] (equation (2)), measures the extent of knowledge retention, with lower values indicating 
better performance. ‘Forward transfer’, in the range [0, 1] (equation (3)), evaluates how well earlier task knowledge supports subsequent tasks, where higher values denote better performance. 
NA, not available.
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memory recall. This mirrors the biological theory of mnemonics, 
where knowledge retention supports task re-mastery. Specifically, 
in the ‘reach’ task, despite the enforced pause, the agent consistently 
maintains knowledge, achieving a success rate of 0.3–0.4 at the initial  
evaluation checkpoint. Moreover, the agent shows an average success- 
rate improvement of 0.2 in the final loop compared with its initial 
attempts. After few-shot knowledge recalls in the third loop, the frame-
work reaches the maximum success rate on most tasks. This improve-
ment is attributed to effective deep memory recall enabled by our 
framework leveraging the DPMM.

To quantify the improvement in few-shot knowledge recall, we 
calculate the improvement percentage for each task (Extended Data 
Table 2) using equation (4). The results show that the improvement 
varies across tasks: 19.63% for ‘reach’, 6.66% for ‘push’, 16.77% for ‘faucet 
open’, 9.94% for ‘button press’ and 6.78% for ‘window close’ between 
the first and second loops. Moreover, comparing the first and third 
loops reveals even greater success-rate enhancements. On average, our 
framework shows an 11.96% improvement between the first and second 
loops and a substantial 21.36% improvement from the first to the third 

loop. These findings highlight our framework’s strong capability for 
effective knowledge recall, rapid adaptation and improved task per-
formance through few-shot exploration. The consistent improvement 
across multiple tasks underscores its robustness in re-mastering tasks 
and maintaining high success rates, showcasing the potential of our 
framework, especially the DPMM knowledge space for advancing LRL.

Discussion
Robotic lifelong learning focuses on acquiring and retaining knowledge 
from a continuous stream of tasks, enabling agents to progressively 
build more complex behaviours through knowledge integration and 
reuse. Our study presents a deep reinforcement learning framework 
that continuously accumulates knowledge from a stream of tasks, 
demonstrating human-like lifelong learning capability. In addition, 
it solves complex long-horizon tasks by combining and reapplying 
acquired skills, a key step towards achieving general intelligence.

In our real-world experiment with a KUKA robot arm, our agent, 
aided by real-time vision from a RealSense camera and language 
embeddings from an LLM, successfully completes a sequence of 
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Fig. 4 | Evaluation of replay’s contribution in knowledge recall. a, The average 
success rates from five runs of the LEGION framework compared with three 
replay-based lifelong learning methods: perfect memory, reservoir and A-GEM. 
The figure shows that LEGION consistently outperforms these methods, 
demonstrating a steady increase in success rate throughout the task sequence. 
b, Evolution of the ‘push’ task data ratio within the training batch. While the 
batch size remains constant, the data ratio for the ‘push’ task gradually decreases 

from an initial maximum of 50% to 10% after learning 10 tasks. c–g, Few-shot 
knowledge-recall performance on reach (c), push (d), faucet open (e), button 
press (f) and window close (g). The agent is trained sequentially on five selected 
tasks over three repeated loops, with buffer capacity limited to three tasks at a 
time. This configuration forces the agent to pause on each base task for 1 million 
steps without replay. For a and c–g, the data are calculated based on at least five 
trials, presented as mean ± standard deviation (μ ± σ).
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tasks, efficiently accumulating knowledge and demonstrating flexible,  
autonomous skill reapplication for long-horizon tasks without relying  
on predefined human demonstrations. In our LRL framework, we 
analyse knowledge management through both visualization and 
statis tical perspectives. The non-parametric model in the knowledge 
space dynamically adjusts to new task inputs by creating or merging 
components, ensuring continuous knowledge preservation without 
prior knowledge quantity requirements. Quantitatively, the agent’s 
success rate improves over time, demonstrating effective knowledge 
accumulation in LRL.

In summary, our framework LEGION (details refer to Fig. 5) excels 
at both preserving knowledge and inferring new tasks in its Bayesian 
non-parametric knowledge space during lifelong learning. Using lan-
guage embeddings to aid in task inference, the agent can efficiently 

undertake long-horizon tasks, showcasing flexibility in addressing 
complex tasks based on accumulated knowledge. We acknowledge 
that the replay mechanism is an inherent part of our framework due 
to its use of SAC as policy, which relies on data sampling from a buffer 
and offline parameter updates. However, the replay is not strictly tied 
to our approach using the Bayesian non-parametric knowledge space, 
but rather a feature of the SAC itself. Our framework currently shows 
substantial improvements in few-shot exploration with intermittent 
replay. In the future, we plan to optimize it further to better balance 
stability and adaptability without relying on replay buffers, while  
also aiming to tackle more challenging scenarios such as zero-shot 
inference. Meanwhile, we acknowledge that our current framework 
operates in structured environments with predefined task set-ups and 
relies on AprilTags for perception. In future work, we aim to expand our 
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framework to unstructured, dynamic environments featuring diverse 
object arrangements and unseen objects, with the goal of enhancing 
the generalization and robustness of lifelong learning systems. In 
addition, we plan to explore applying our non-parametric knowledge 
space to robot learning involving multiple agents or heterogeneous 
embodiments (Supplementary Section 3.5), intending to achieve 
clustered and transferable general intelligence. As our current work 
assumes the reward function to be an inherent and static property of 
the environment, another promising future direction involves using 
LLMs42–44 for continuous reward refinement during the lifelong learn-
ing process. This would enable agents to quickly adapt to entirely new 
control tasks. Moreover, the ability to continuously learn and preserve 
skills from a stream of tasks using a non-parametric knowledge space, 
combined with smooth and stable downstream action outputs from 
the diffusion model, holds potential for the development of broadly 
applicable large behaviour models.

Methods
Training and deployment
Training. Figure 5 a illustrates the concept overview of our proposed 
LEGION framework. Unlike the typical multi-task approaches, where 
the agent learns all tasks at once, our proposed framework can conti-
nuously gain knowledge from a stream of one-time feeding tasks. 
This implies that our agent can imitate the real human learning pro-
cess, tackling each manipulation task one after another throughout  
its lifespan.

During training, we let the agent learn tasks one by one, allowing 
the agent to undergo 1 million training steps for each task. Importantly, 
we evaluate the agent’s performance on all tasks every 10,000 steps by 
following the conventional multi-task fashion, irrespective of whether 
it has undergone training for these tasks or not. In our framework, 
we follow the off-policy training mode as it has more sampling effi-
ciency. To achieve both preserving existing knowledge and inferring 
new tasks simultaneously, our proposed framework is structured 
hierar chically into two parts, namely, the upstream task inference and 
knowledge preservation module and the downstream policy learn-
ing module. The upstream module consists of the following compo-
nents: the pre-trained language embedding module, the task encoder, 
the Dirichlet process mixture knowledge space, and the generative  
modules. In the simulation, we employ an offline approach where lan-
guage embeddings are pre-encoded using an LLM combined with an 
audio recognition device and stored for training. This pre-processing 
step accelerates training by eliminating the need for real-time encod-
ing, which is computationally intensive. For specific details regarding  
the content of the language side information, refer to Supplementary 
Section 7. Subsequently, the task state observations s, which include 
positions of end-effector, objects and goals, are combined with the 
current task’s language embedding I and sent to the task inference 
encoder. Following that, the generated inference results z are fitted by 
the DPMM within the knowledge space. The inferred results from the 
same task are clustered and stored within the same components in the 
DPMM, enabling knowledge preservation in our framework. When deal-
ing with data samples from new task distributions, the DPMM can create 
new components to accommodate them, thereby separating them from 
existing clusters and supporting continual knowledge accumulation 
during agent lifelong learning. Simultaneously, the generative module 
reconstructs the language embeddings and predicts the dynamic 
function of the current task. This enables disentangled parameter 
updates between upstream and downstream modules. Moreover, an 
ablation study in Supplementary Section 3.4 demonstrates that the 
generative module plays a crucial role in stabilizing the lifelong learning 
process. For the downstream policy module defined in Fig. 5a, we utilize  
the SAC45 as a concrete policy learning module, where the critics  
calculate the action value function Q(st, at, zt) and the actor provides the 
corresponding action patterns at to accomplish the tasks. The inferred 

task results are conditioned as part of downstream inputs, contribut-
ing to more precise action pattern learning. The detailed structures 
of individual modules are introduced in Supplementary Section 4.

Deployment. After training in simulation environments, we imple-
ment our trained agent onto a real-world KUKA manipulator to build 
up an embodied lifelong learning agent. The real-world deployment 
overview is illustrated in Fig. 5b, where the framework includes two 
primary components: the embodied agent software side and the 
real-world hardware side. On the software side, we deploy the trained 
task encoder, DPMM and downstream actor to create the embodied 
agent. In the real-world demonstration, we utilize an online encoding 
approach, where human commands are processed and encoded as lan-
guage embeddings to execute each task. This set-up reflects real-world 
usage, allowing users to issue verbal commands directly to the robot. 
For the hardware side, our agent’s physical body comprises a KUKA iiwa 
with a Robotiq 2F85 gripper. In addition, we utilize a global RealSense 
camera at the table edge to capture object positions via AprilTags. 
Later, the task-related goal position is determined by the initial posi-
tion of the detected object and the corresponding side information 
context. Python-based robot operating system controls the movement 
of the KUKA, with a system frequency of 20 Hz. We limit the total work 
steps of a single-task trajectory to 150, maintaining consistency with 
simulation environments. To ensure smooth communication between 
the software and hardware control, we employ two transformation 
modules, namely, ‘Sim2Real’ and ‘Real2Sim’. These modules serve 
similar purposes, including safety control checks, coordinate frame 
transformation between simulation and the real world, hand-to-eye 
calibration, and camera offset set-up. A detailed experiment set-up 
for both simulation and deployment can be found in Supplementary 
Section 5. Moreover, we provide Supplementary Video 4 to introduce 
the implementation details of our framework for both training and 
deployment processes.

Language embedding. The manipulation tasks performed by a robot 
arm show a natural tendency towards a limited set of action patterns. 
On the one hand, tasks like ‘push the teacup from left to right’ and 
‘open the window in a horizontal direction’ may differ in their language 
description, but their actual action patterns might share similar trajec-
tories. This similarity can pose challenges during agent training, lead-
ing to inaccurate action patterns and/or misoperations in real-world 
performance. On the other hand, although such task-related contex-
tual information (or side information) is often available in real-world 
scenarios (for example, between human communication), it is fre-
quently overlooked in conventional reinforcement learning methods 
and is difficult to provide to the embodied agent without encoding 
of a LLM. By leveraging advancements in LLMs3,31, our embodied LRL 
agent becomes more adept at utilizing this side information, like  
natural language-based task descriptions, to acquire generalizable 
skills and facilitate knowledge transfer among tasks22. In this study, 
we capture natural language side information through an external 
speech-recognition device. We adopt a human-in-the-loop approach 
to guide the embodied agent in real-world tasks. In our case, we 
employ one of the state-of-the-art pre-trained LLMs, RoBERTa31, to 
encode the side information about manipulation tasks into language 
embeddings. Subsequently, these embeddings are conditioned with 
state observations and provided to the agent, aiding in accurate 
task inference and improving its execution of corresponding action 
patterns.

Observation space. The state observation space includes the 
end-effector position (three dimensions), the object pose (six dimen-
sions) and the goal positions (three dimensions). We encode the  
language side information related to the task context with a pre-trained 
RoBERTa model, whose output has 768 dimensions.
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Action space. The action space contains four dimensions, including 
the movement of the end-effector tip (units expressed in metres) and 
the open distance of the gripper. The upper and lower bounds for each 
dimension of action space are limited within the range [−1.00, +1.00].

Reward. Our designed scenarios involve goal-based manipulation 
tasks where success is determined by bringing the target object  
within a specified goal range. To comprehensively evaluate action  
patterns, the global reward for tasks is divided into distinct compo-
nents. These components include rewards for reaching, grasping, 
pushing, pulling and pressing objects to achieve the specified targets 
or poses. For more details, refer to Supplementary Section 8.

Optimization. Both the upstream task inference module and down-
stream policy learning module are trained using Adam optimizers, 
and we reset the intrinsic parameters of optimizers before initiating 
the training on every new incoming task.

Metrics
Recent works in the conventional multi-task or meta-learning- 
based approaches often rely on metrics based on reward and/or  
success rate to evaluate agent performance. However, in the context 
of LRL, typical questions still remain unclear, including how much the 
agent may forget the previously acquired knowledge after training  
on subsequent tasks, or to what extent the previously acquired  
knowledge can aid the subsequent ones. Therefore, it becomes  
necessary to employ additional metrics that capture the unique  
characteristics of lifelong learning fashion. In our study, in addition  
to the success rate, we adopt two well-used metrics to access our  
proposed LRL framework, namely, ‘forgetting’ and ‘forward transfer’. 
To further evaluate the performance of few-shot knowledge recall, we 
employ a normalized ‘improvement’ metric to quantify the agent’s per-
formance. Assuming a total of N tasks, and considering that the agent 
undergoes training for each task over a span of Δ steps, the cumulative 
global training duration across all N tasks amounts to T = N × Δ steps.

Average success rate. In our study, as all our environments are 
goal-based manipulation tasks, we select the task’s success rate as 
one of the evaluation metrics. Here, Pi(t) signifies the success rate of 
task i at time step t. The values Pi(Δ(i − 1)) and Pi(Δi) denote the success 
rates of task i before and after training on the same task, respectively. 
The overall average performance on all N tasks is calculated as follows:

P(t) ∶ 1
N

N
∑
i=1

Pi(t). (1)

Notably, P is constrained within the range [0, 1]. We also employ P(T) 
for the final evaluation, particularly for the purpose of hyperparameter 
optimization and ablation study. A higher value of P corresponds to 
an improved performance. Moreover, we also consider the episode 
rewards as one of our metrics, for more details related to the rewards 
comparison, refer to Supplementary Sections 1 and 2.

Forgetting. This metric quantifies how much knowledge is forgotten 
after the agent is trained on subsequent tasks. Drawing upon recent 
research contributions6,46, we introduce the forgetting (F) to assess the 
agent’s capacity to preserve knowledge within a continuous stream of 
tasks. Specifically, Fi is calculated by subtracting the final success rate 
of task i, denoted as Pi(T), from the success rate of task i after training 
on the task itself, represented as Pi(Δi). The overall forgetting metric 
is computed as follows:

Fi = (Pi(∆ i) − Pi(T )) ,

F = 1
N−1

N−1
∑
i=1

Fi.
(2)

Notably, evaluating the forgetting of the most recently encountered 
task carries limited significance. Therefore, we consider only the first 
N − 1 tasks for this calculation. The forgetting metric is constrained 
within the range F ∈ [−1, 1]. When F > 0 represents that the agent may 
have lost knowledge of prior tasks. Conversely, when F < 0, the back-
wards transfer occurs, signifying that training on subsequent tasks j  
(with i < j ⩽ N) has led to an improvement in performance on prior  
tasks i. For the F, a lower value indicates superior performance.

Forward transfer. Forward transfer (FT) assesses the extent to which 
previous tasks contribute to the learning of new ones. Inspired by 
recent works1,6, we define the zero-shot forward transfer metric as 
follows:

FTi =
1

i−1

i−1
∑
k=1

Pk(∆k),

FT = 1
N−1

N
∑
i=2
FTi.

(3)

Here, the metric range is constrained to FT ∈ [0, 1], where the forward 
transfer for the 𝑖-th task is calculated as the average performance across 
tasks from 𝑘 = 1 to 𝑘 = 𝑖− 1. It is important to emphasize that evaluating 
the first task holds no meaningful significance. Thus, we consider a 
total of N − 1 subsequent tasks for this assessment. A higher value in 
this metric indicates that knowledge acquired from earlier tasks aids 
the agent in enhancing its performance on subsequent tasks, reflecting 
better performance.

Improvement of few-shot knowledge recall. To quantify the improve-
ment statistics in few-shot knowledge recall, we calculate the improve-
ment percentage for each task as follows. First, we computed the integral 
of the agent’s success rate of selected two loops for each task. We then 
subtracted the integral from the earlier loop from the subsequent loop 
and normalized the difference. This normalized value, denoted as f (in 
the range [−1, 1]), serves as our evaluation metric for few-shot improve-
ment. A higher value indicates better performance during the subse-
quent loops compared with the earlier access, whereas a lower value 
suggests the opposite. The specific calculation is detailed in equation (4):

f = 1
T × Pmax

(∫
T j

t j

P(t)dt −∫
Ti

ti
P(t)dt) , (4)

where Pmax indicates the best performance value that the agent can 
acquire (in our case, the success rate with 1.0), P(t) denotes the per-
formance value over time, and t and T are the lower and upper bounds, 
respectively, of training steps with j > i.

Non-parametric knowledge space
In this section, we present our non-parametric knowledge space from 
two aspects. First, we introduce the mathematical theory behind the 
Dirichlet process mixture model. Following that, we introduce an 
online variational inference method of DPMM that is used to update 
the model parameters.

Dirichlet process mixtures. Bayesian non-parametric models are a 
class of models that allow for flexible modelling of complex data struc-
tures without making strict assumptions about the underlying distribu-
tion of the data. Unlike Bayesian parametric models (for example, 
Gaussian mixtures), which have a fixed number of parameters, Bayesian 
non-parametric models have a potentially infinite number of param-
eters that are determined by the data. Bayesian non-parametric models 
are typically based on probabilistic models that involve prior distri-
butions over model parameters. Such prior distributions are often 
chosen to be flexible and allow for infinite-dimensional parameter 
spaces. This allows the model to adapt to the underlying structure of 
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the data, whether it is simple or complex. One of the typical non- 
parametric models is the Dirichlet process mixture model, whose 
parameters are determined through the Dirichlet process. The Dirichlet 
process is a probability distribution over probability distributions. It 
is used in Bayesian non-parametric to model data when the number of 
groups or clusters is not known a priori. Let G be a random probability 
measure, ℋ  be a base probability distribution from a parameter space 
Θ, and α be a positive real-valued scalar named concentration param-
eter. Then, G is said to be drawn from a Dirichlet process (DP) with α 
and ℋ , denoted as G ∼ DP (α,ℋ) . To generate the samples from a  
Dirichlet process, a method called the stick-breaking process is 
employed (Supplementary Section 10).

DPMM serves as a prominent model in the Bayesian non-parametric 
domain that is used to capture an infinite mixture of clusters for model-
ling a set of observations x = x1:N. Unlike finite mixture models in the 
Bayesian parametric domain, the number of components in DPMM is 
not predefined, but rather determined by the observations in an online 
fashion. In DPMM, each data xi is sampled from a distribution ℱ(θi), 
where θi represents a latent variable independently drawn from a Dir-
ichlet process prior G-based base distribution. A Dirichlet process prior 
introduces discreteness and clustering properties by allowing θi to take 
on repeated values. Consequently, all data points drawn with the same 
value of θi form a cluster, resulting in the natural clustering of observa-
tions. The active number of cluster components is determined by the 
number of unique values of θi, which can be dynamically inferred based 
on the observed data. To assign data points to clusters, each point is 
associated with an assignment variable vi. This variable takes on the 
value k with probability πk, which is drawn from a categorical distribu-
tion (Cat). The generative process of DPMM can be expressed using 
the stick-breaking process (Supplementary Section 10.1), where the 
mixing proportions π can also be equivalently expressed as sampled 
from a generalized Ewens distribution (GEM). Specifically, the genera-
tive process of DPMM can be represented as follows:

θ∗k |λ ∼ ℋ(λ),

π|α ∼ GEM (α),

vi|π ∼ Cat (π),

xi|vi ∼ ℱ(θ∗vi ).

(5)

Variational inference. In this study, we focus on a variational 
inference-based method to estimate the true posterior of data, as 
they tend to offer faster and more scalable solutions compared with 
sampling-based methods. The fundamental concept behind variational 
inference is to transform the inference problem into an optimization 
problem. Subsequently, the aim is to uncover the underlying joint prob-
ability distribution of the unknown parameters, allowing us to explore 
their implicit relationships. In the case of the DPMM, as described in 
equation (5), the joint probability distribution of its parameters can 
be expressed as follows:

p(x,v,θ,β) =
N
∏
n=1

ℱ(xn|θvn )Cat (vn|π(β))
∞
∏
k=1

ℬ(βk|1,α)ℋ(θk|λ), (7)

where ℬ is stick-breaking process probability and βk are corresponding 
random variables. As the true posterior p(v, θ, β∣x) is intractable, the 
objective is to identify the optimal variational distribution q*(v, θ, β) 
that minimizes the Kullback–Leibler (KL) divergence from the exact 
conditional distribution. Instead of directly minimizing the KL diver-
gence, we maximize the evidence lower bound (ELBO) which includes 
the expected log-likelihood of the data 𝔼𝔼𝔼logp(x|v,θ,β)]  and the KL 
divergence between two priors 𝕂𝕂𝕂𝕂(q(v,θ,β)||p(v,θ,β)). Here, we have 
(Supplementary Section 10.2):

ELBO (q) = 𝔼𝔼𝔼logp(x|v,θ,β)] − 𝕂𝕂𝕂𝕂(q(v,θ,β)||p(v,θ,β)). (8)

In the context of DPMM, grounded in the concept of variational infer-
ence, we formulate the variational distribution q under the mean-field 
assumption, where each latent variable possesses its variational fac-
tor, and these factors are considered independent from one another. 
Specifically, we have:

q(v,θ,β) =
N
∏
n=1

q(vn| ̂rn)
K
∏
k=1

q(βk|α̂k1 , α̂k0 )q(θk|λ̂k),

=
N
∏
n=1
Cat(vn| ̂rn1∶nK )⏟⎵⎵⎵⏟⎵⎵⎵⏟

qvn

K
∏
k=1

ℬ(βk|α̂k1 , α̂k0 )⏟⎵⎵⎵⏟⎵⎵⎵⏟
qβk

ℋ(θk|λ̂k)⏟⎵⏟⎵⏟
qθk

,
(9)

where qvn is a categorical factor with variational parameters ̂rnk, qβk is a 
factor for stick-breaking proportion with parameters α̂k0 , α̂k1, and qθk   
is a base distribution factor with parameters λ̂k. In the context of vari-
ational inference, it is fundamental to recognize that the true posterior 
distribution is inherently infinite, and obtaining an exact representa-
tion is unfeasible, hence necessitating approximations. However, by 
augmenting the number of components K within the categorical factor, 
we can enhance the optimization of the ELBO objective, leading to a 
variational distribution that closely approximates the infinite  
posterior. To maintain computational tractability, we restrict the cat-
egorical factor to a finite set with K components (q(vn = k) = 0 for k > K), 
ensuring that K is sufficiently large to encompass all potential features. 
Furthermore, we explore a specific scenario in which both the base 
distribution ℋ  and the cluster component distribution ℱ  come from 
the exponential family. Hughes and Sudderth30 illustrated that in this 
context, it is possible to formulate the ELBO in terms of the expected 
mass ̂Nk and the expected sufficient statistic sk(x) associated with each 
component k:

ELBO (q) =
K
∑
k=1

[𝔼𝔼q𝔼θk]
⊤sk(x) − ̂Nk𝔼a(θk)] + ̂Nk𝔼logπk(β)] −

N
∑
n=1

̂rnk log ̂rnk

+𝔼𝔼q [log
ℬ(βk |1,α)

q(βk |α̂k1 ,α̂k0 )
] + 𝔼𝔼q [log

ℋ(θk |λ)
q(θk |λ̂k)

]] .
(10)

Subsequently, each variational factor can be iteratively updated inde-
pendently. In the initial stage, we perform updates on the local vari-
ational parameters ̂rnk  within qvn  for each clustering assignment. 
Following this step, we advance to the update of the global parameters 
within the stick-breaking factor qβk  and the base distribution factor 
qθk. We employ this coordinate ascent method to iteratively optimize 
the local and global parameters with the objective of maximizing the 
ELBO. The computation of the summary statistics ̂Nk and sk(x) requires 
accessing the complete dataset. In the case of large datasets, a 
batch-based approach known as memoVB30 is employed. This 
approach breaks down the summary statistics of the full data into a 
summation of the summary statistics of each batch. The 
non-parametric nature of the DPMM allows for flexibility in adapting 
to varying numbers of clusters. This characteristic enables the devel-
opment of heuristics for dynamically adding or removing clusters, 
which proves beneficial in avoiding local optima when utilizing 
batch-based variational inference methods. For detailed derivations, 
refer to Supplementary Section 10.2.

MemoVB incorporates birth and merge moves to facilitate 
dynamic cluster adjustment. To create new clusters, poorly described 
subsamples x′ from one existing cluster are collected as they pass 
through each batch, and a separate DPMM model with K′ initial clus-
ters is fitted. Assuming that the active number of clusters before the 
birth move is K, the acceptance or rejection of new cluster proposals 
is determined by comparing the result of assigning x′ to K + K′ with 
that of assigning x′ to K. In addition to the birth move, a merge move 
can potentially combine a pair of clusters into one. The decision to 
merge two clusters is based on whether the merge improves the ELBO 
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objective, resulting in K − 1 clusters after the merge30. By integrating 
with this online inference method, the DPMM can consistently preserve 
the gained knowledge in the knowledge space from a theoretically 
endless stream of data, where the features or knowledge within it may 
steadily grow. For more details, refer to Supplementary Section 10.3.

Upstream task inference
In this section, we introduce the derivations behind our upstream 
task inference module (Fig. 5a). We start with the knowledge inference 
and preservation process of our knowledge space. Subsequently, we 
introduce the generative process of upstream modules that enable the 
disentangled and stabilized learning process.

Knowledge inference and preservation. To enable simulta neous 
knowledge inference and preservation in the knowledge space, we 
employ a DPMM + memoVB that was introduced in the previous  
section. The DPMM + memoVB has the advantage of being able to  
cluster a potentially infinite number of features based on the obser-
vations, while dynamically adapting to fit the number, shape and  
density of individual components. This dynamic adaptability holds 
great potential for preserving knowledge in a continuous stream  
of tasks.

Our framework employs an alternating optimization scheme 
to eliminate the necessity of fitting a new DPMM from scratch every 
time. First, we update the DPMM module using the inference result zi, 
which are sampled from the task encoder. Each update of the DPMM 
module takes place after certain training steps of the task encoder and 
generative module. Then, with the DPMM module fixed, we update 
the task encoder by minimizing the KL divergence, using the assigned 
clusters to each zi.

When updating the parameters of the DPMM, we perform fitting 
on the task inference result zi obtained from the task encoder. Consider 
a set of state inputs {xxxi}

n
i=1 ∈ X  with xi = (si, Ii), the DPMM module in the 

knowledge space learns: (1) the inference results zi and corresponding 
mapping between xi and zi; (2) the number of K active components and 
their parameters {μk,Σk}k=1∶K; and (3) the cluster assignment vi of each 
input, where vi ∈ {1, …, K}. The cluster assignments of inference results 
are determined jointly by the latent representation and the DPMM 
components. In each update, we initialize the DPMM with the param-
eters learned from the previous updates and apply it to new samples 
generated by the updated task encoder. This enables us to update the 
same DPMM while incorporating the latest changes in the knowledge 
space mappings.

During the training of the task inference module, we aim to mini-
mize both the generative loss ℒgen and the KL divergence loss ℒKL in a 
joint manner. ℒgen measures the error between the original inputs x 
and the generated samples x*. Meanwhile, ℒKL represents the KL diver-
gence between task encoder distribution and knowledge clustering 
components. To compute ℒKL, we first obtain the cluster assignment 
vi = k of each task inference results zi from the current DPMM. Using 
the DPMM, we determine the mean and covariance of the assigned 
cluster k, denoted as μk and Σk respectively. Following that, the ith 
inference result assigned to the component k, which is represented as 
zik, is generated through the reparametric trick47. Notably, the hard 
assignment between the inference result and corresponding cluster 
component in knowledge space may lead to incorrect assignments for 
certain samples, resulting in errors when calculating the KL divergence. 
To address this issue, we propose the use of a soft assignment, in which 
we compute the probability pik of assigning the zi to cluster k using the 
DPMM, considering all possible components k ∈ {1, 2, …, K}. As a result, 
the KL divergence is defined as a weighted sum, taking into account 
the probabilities of each cluster assignment:

ℒKLi =
K
∑
k=1

pikℒKLik , (11)

where ℒKLik  indicates the KL divergence between the distribution of 
task encoder output and component k in DPMM, and pik represents  
the probability of zi assigned to cluster component k. While more 
sophisticated weighting strategies can be employed, our empirical 
findings suggest that simple weighting based on probabilities is effec-
tive. For detailed derivations, refer to Supplementary Section 11.1.

Generative process. In our framework, we employ a generative module 
at the upstream level to facilitate a disentangled and stabilized learning 
process. The generative module includes two distinct components: 
the language embedding generation, denoted as pθ(It∣zt), and  
the dynamic prediction model for corresponding manipulation task, 
represented as pθ(st+1∣st, at, zt). Each component is interpreted by a 
separate multilayer perception module with general parameters θ 
∈ {θembed, θdynamics}. The detailed structures of our proposed generative 
modules are presented in Supplementary Figs. 18 and 19. During the 
training process, the language embedding decoder takes only the  
task inference results zt as inputs and generates the language  
embedding tokens, donate as I*. These tokens are then combined with 
the original inputs I to compute the overall similarity using the sum  
of mean squared error as the side information loss function, denoted 
as ℒembed. Furthermore, the dynamics prediction module models the 
state transition function by taking the current state observation st, 
normalized action vector at, and latent variables as inputs to generate 
the expected state observation at the next step, denoted as s∗t+1.  
By comparing this prediction with the actual next observation st+1,  
we obtain the loss function for dynamic prediction, which is  
represented by ℒdyn. Meanwhile, with normalization in each input 
dimension, we can stabilize the overall training process. Following that, 
the total loss of the upstream task inference module is calculated  
as follows:

ℒ = ζℒdyn + ηℒembed⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
ℒgen

+ξℒKL. (12)

with ζ and η representing the weighting factors for each loss function 
term, which regulate the importance of each generative module. ξ 
represents the disentangled factor of the KL divergence term. In sum-
mary, the generation module facilitates a disentangled learning process 
unaffected by downstream policy training. This set-up stabilizes the 
exploration process of the downstream policy module, particularly 
during the initial steps of each task where noise is inevitable. Simulta-
neously, regenerating language embeddings and modelling the state 
transition function contribute to the agent learning more accurate 
action patterns for individual manipulation tasks. For detailed deriva-
tions of the loss functions related to the generative process, refer to 
Supplementary Section 11.2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions are present in the article 
and the Supplementary Information. Microsoft Excel (Version 2405, 
Build 17628.20110, 64-bit) was utilized to analyse, interpret and sum-
marize the statistical results. The source data used to present this work 
are available on Zenodo at https://doi.org/10.5281/zenodo.14265089 
(ref. 48) or via GitHub at https://github.com/Ghiara/LEGION.

Code availability
The code used for training and evaluation, which supports the conclu-
sions of this study, is publicly available via Zenodo at https://doi.org/ 
10.5281/zenodo.14265089 (ref. 48) or via GitHub at https://github.
com/Ghiara/LEGION.
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Extended Data Fig. 1 | t-SNE projections of buffer data inference results after 
each base task training. The data is randomly sampled from the buffer and fed 
into the task encoder to do the inference. In the buffer we reserve a place for 
only three tasks, the new incoming inputs will overwrite the earliest data in the 
buffer. We use this method to force the agent to pause on the corresponding task 
for a period of time and evaluate its few-shot performance in the subsequent 

loops (few-shot revisit and knowledge recall). The DPMM dynamically adjusts its 
knowledge clustering components using the ‘birth’ and ‘merge’ heuristics, fitting 
model parameters based on observed data. This approach eliminates the need to 
predetermine or set any assumptions about the number of tasks the agent may 
encounter.
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Extended Data Table 1 | The average success rate for each proposed manipulation task in the real-world setup

Each data point is calculated based on three real-world trials, and we report the average value for comparison.
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Extended Data Table 2 | Improvement percentage (%) from the few-shot evaluation

The values are computed using equation (4) from the main text.
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