
HAMSTER: HIERARCHICAL ACTION MODELS FOR
OPEN-WORLD ROBOT MANIPULATION

Yi Li⋆‡1,2, Yuquan Deng⋆2, Jesse Zhang⋆1,3, Joel Jang1,2, Marius Memmel2, Raymond Yu2

Caelan Garrett1, Fabio Ramos1, Dieter Fox1,2, Anqi Li†1, Abhishek Gupta†1,2, Ankit Goyal†1
1NVIDIA 2University of Washington 3University of Southern California

ABSTRACT

Large foundation models have shown strong open-world generalization to com-
plex problems in vision and language, but similar levels of generalization have yet
to be achieved in robotics. One fundamental challenge is the lack of robotic data,
which are typically obtained through expensive on-robot operation. A promising
remedy is to leverage cheaper, “off-domain” data such as action-free videos, hand-
drawn sketches or simulation data. In this work, we posit that hierarchical vision-
language-action (VLA) models can be more effective in utilizing off-domain data
than standard monolithic VLA models that directly finetune vision-language mod-
els (VLMs) to predict actions. In particular, we study a class of hierarchical VLA
models, where the high-level VLM is finetuned to produce a coarse 2D path in-
dicating the desired robot end-effector trajectory given an RGB image and a task
description. The intermediate 2D path prediction is then served as guidance to
the low-level, 3D-aware control policy capable of precise manipulation. Doing
so alleviates the high-level VLM from fine-grained action prediction, while re-
ducing the low-level policy’s burden on complex task-level reasoning. We show
that, with the hierarchical design, the high-level VLM can transfer across signif-
icant domain gaps between the off-domain finetuning data and real-robot testing
scenarios, including differences on embodiments, dynamics, visual appearances
and task semantics, etc. In the real-robot experiments, we observe an average of
20% improvement in success rate across seven different axes of generalization
over OpenVLA, representing a 50% relative gain. Visual results are provided at:
https://hamster-robot.github.io/

1 INTRODUCTION

Developing general robot manipulation policies has been notoriously difficult. With the advent of
large vision-language models (VLMs) that display compelling generalization capabilities, there is
optimism that the same recipe is directly applicable to robot manipulation. A line of prior work (Bro-
han et al., 2023a; Kim et al., 2024; Black et al., 2024) builds open-world vision-language-action
models (VLAs) by finetuning off-the-shelf pretrained VLMs to directly produce robot actions. These
VLA models, which we refer to in this work as monolithic VLA models, rely crucially on large
robotics datasets, complete with on-robot observations, e.g., images and proprioceptive states, and
actions. However, on-robot data is expensive, since end-to-end observation-action pairs are typically
collected on the robot hardware through, e.g., teleoperation. Despite recent community-wide efforts
in building large-scale robotics datasets (Collaboration et al., 2023; Khazatsky et al., 2024), the
size, quality, and diversity of existing robotics datasets are still limited, and monolithic VLA models
have yet to demonstrate emergent capability comparable to VLMs and LLMs in other domains of
study. Moreover, monolithic VLA models are constrained by their inference frequency to achieve
dexterous and dynamic manipulation tasks (Brohan et al., 2023a; Kim et al., 2024).

On the other hand, relatively small robot policy models have shown impressive dexterity and robust-
ness. Such models have demonstrated promise across a range of complex tasks involving contact-
rich manipulation and 3D reasoning, spanning domains from tabletop manipulation (Shridhar et al.,

⋆ co-first authors ‡ project lead † equal advising

1

https://hamster-robot.github.io/

Data: In-Domain Robot Teleop

Imitation Learning

Low-Level Policy

VLA Models HAMSTER: VLM +

Imitation Learning

a

Data: Large-Scale

Robot Teleop

Generalization: Low

...

Vision Language Action Model

a

Data: Easy to Obtain, Off-Domain Data

HAMSTER VLM

a

Generalization: Medium Generalization: High

Data: In-Domain

Robot Teleop

Low-Level Policy

Simulators Other RobotWeb Data

Data: In
Domain
Robot
Teleop

✍ Draw 2D

Path

Point Prediction

Figure 1: Overview of HAMSTER, VLAs and “smaller” imitation learning methods. HAMSTER’s hierarchi-
cal design results in better generalization with a small amount of in-domain data. HAMSTER is able to utilize
cheap training sources such as videos or simulations for enhanced generalization.

2023; Goyal et al., 2023; 2024; Ke et al., 2024) to fine dexterous manipulation (Chi et al., 2023;
Zhao et al., 2023). Trained on relatively small datasets, these models show local robustness, and can
achieve dexterous and high-precision control. However, they are often brittle to drastic changes in
the environment or semantic description of the tasks (Pumacay et al., 2024). These models also can
struggle to effectively leverage simulation data for real-world manipulation tasks due to sim-to-real
gaps in visual appearances and system dynamics (Li et al., 2024; Mandlekar et al., 2021).

In this work, we ask – how can we marry the generalization benefits of large VLMs, with the ef-
ficiency, local robustness, and dexterity of small policy models? Our key insight is that, instead of
directly predicting robot actions, VLMs can be fine-tuned to produce intermediate representations
as high-level guidance on solving the robot manipulation task. The intermediate representation can
then be consumed by the low-level policy model to produce actions, alleviating the low-level policy
from the burden of long-horizon planning and complex, semantic reasoning. Further, if the inter-
mediate representations are chosen such that they are 1) easily obtainable from image sequences;
2) largely embodiment agnostic; and 3) sufficiently robust to subtle changes in dynamics, the VLM
can be fine-tuned with off-domain data where robot actions are unavailable or inaccurate. Such off-
domain data does not need to be collected on the actual robot hardware. Examples of off-domain
data include action-free video data, simulation data, human videos, and videos of robot with differ-
ent embodiments. These off-domain data are generally easier to collect and may already be abundant
in existing datasets. We hypothesize, and show experimentally in Fig 8, that this hierarchical sepa-
ration can allow VLA models to more effectively bridge the domain gap between off-domain data
and in-domain robotic manipulation.

To this end, we propose a hierarchical architecture for VLAs, HAMSTER (Hierarchical Action
Models with SeparaTEd Path Representations), where large fine-tuned VLMs are connected to low-
level policy models via 2D path representations1. A 2D path is a coarse trajectory of the 2D image-
plane position of the robot end-effector2, as well as where the gripper state changes, i.e., opens and
closes (see Fig. 2). These 2D paths can be obtained cheaply and automatically from data sources
such as action-free videos or physics simulations, using point tracking (Doersch et al., 2023; Karaev
et al., 2025), hand-sketching (Gu et al., 2023), or proprioceptive projection. This allows HAM-
STER can effectively leverage these abundant and inexpensive off-domain data when fine-tuning
the high-level VLM. The hierarchical design presented in HAMSTER also offers additional advan-
tages through the decoupling of VLM training and low-level action prediction. Specifically, while
the higher-level VLM is predicting semantically meaningful trajectories from monocular RGB cam-
era inputs, the lower-level policy models can additionally operate from rich 3D and proprioceptive
inputs. In doing so, HAMSTER inherits the semantic reasoning benefits of VLMs along with the 3D

1Representations similar to 2D paths has been explored in the robot learning literature (Gu et al., 2023),
primarily as a technique for flexible task specification. We refer readers to section 2 for a detailed discussion.

2For human video, this corresponds to the position of the palm center or fingertips.

2

reasoning and spatial awareness benefits of 3D policy models (Goyal et al., 2024; Ke et al., 2024).
Moreover, the high-level VLM and low-level policy model can be queried at different frequencies

In summary, we study a family of hierarchical VLA models HAMSTERs, where finetuned VLMs
are connected to low-level 3D policy models (Goyal et al., 2024; Ke et al., 2024). The 2D paths
produced by high-level VLMs serve as guidance for a low-level policy that operates on rich 3D and
proprioceptive inputs, allowing low-level policies to focus on robustly generating precise, spatially-
aware actions. In our experiments, we observe an average of 20% improvement in success rate
over seven different axes of generalization over OpenVLA (Kim et al., 2024), which amounts to
50% relative gain, as shown in Table 6. Since HAMSTER is built on both open-source VLMs and
low-level policies, it can serve as a fully open-sourced enabler for the community-building vision-
language-action models. It is important to note that while we are certainly not the first to propose
hierarchical VLA models (Gu et al., 2023; Nasiriany et al., 2024a), we propose the novel insight
that this type of hierarchical decomposition allows for these models to make use of abundant off-
domain data for improving real-world control. This opens the door to alternative ways of training
large vision-language-action models using cheaper and more abundant data sources.

2 RELATED WORK

LLMs and VLMs for robotics. Early attempts in leveraging LLMs and VLMs for robotics are
through pretrained language (Jang et al., 2022; Shridhar et al., 2023; Singh et al., 2023) and vi-
sual (Shah & Kumar, 2021; Parisi et al., 2022; Nair et al., 2023; Ma et al., 2023) representations.
However, these are not sufficient for complex semantic reasoning and generalization to the open
world (Brohan et al., 2022; Zitkovich et al., 2023). Recent research has focused on directly lever-
aging open world reasoning and generalization capability of LLMs and VLMs, by prompting or
fine-tuning them to, e.g., generate plans (Duan et al., 2024; Huang et al., 2023b; Lin et al., 2023;
Liang et al., 2023; Singh et al., 2023; Brohan et al., 2023b), construct value (Huang et al., 2023a)
and reward functions (Kwon et al., 2023; Sontakke et al., 2023; Yu et al., 2023; Ma et al., 2024;
Wang et al., 2024). Our work is more closely related to the literature on VLA models, summarized
below.

Monolithic VLA models as language-conditioned robot policies. Monolithic VLA models have
been proposed to produce robot actions given task description and image observations directly (Bro-
han et al., 2022; Jiang et al., 2023; Zitkovich et al., 2023; Team et al., 2024; Kim et al., 2024;
Radosavovic et al., 2023). Monolithic VLA models are often constructed from VLMs (Liu et al.,
2024d; Bai et al., 2023; Driess et al., 2023; Lin et al., 2024), and are trained on large-scale on-robot
data (Brohan et al., 2022; Collaboration et al., 2023; Khazatsky et al., 2024) to predict actions as
text or special tokens. However, due to the lack of coverage in existing robotics datasets, they must
be finetuned in-domain on expensive on-robot data. Their action frequency is also constrained by
inference frequency, limiting their capability to achieve dexterous and dynamic tasks. The most rele-
vant monolithic VLA model to our work is LLARVA (Niu et al., 2024), which predicts end-effector
trajectories in addition to robot actions. However, LLARVA does not use trajectory prediction to
control the robot; rather, it uses it as an auxiliary task to improve action prediction. Therefore,
LLARVA still suffers from the limitations of monolithic VLA models. In contrast, our work takes a
hierarchical approach, enabling us to use specialist lower-level policies that take in additional inputs
the VLMs cannot support, such as 3D pointclouds, to enable better imitation learning. Our predicted
paths then enable these lower-level policies to generalize more effectively.

VLMs for predicting intermediate representations. Our work bears connections to prior meth-
ods using vision-language models to predict intermediate representations. These methods can be
categorized by the choice of predicted representations:

Point-based predictions: A common intermediate prediction interface has been keypoint affor-
dances (Stone et al., 2023; Sundaresan et al., 2023; Nasiriany et al., 2024b; Yuan et al., 2024b;
Kuang et al., 2024). Keypoint affordances can be obtained through using open-vocabulary detec-
tors (Minderer et al., 2022), iterative prompting of VLMs (Nasiriany et al., 2024b), or fine-tuning
detectors to identify certain parts of an object by semantics (Sundaresan et al., 2023). Perhaps most
related to our work, Yuan et al. (2024b) finetune a VLM to predict objects of interest as well as free
space for placing an object, and Liu et al. (2024b) propose a mark-based visual prompting procedure
to predict keypoint affordances as well as a fixed number of waypoints. As opposed to these, our

3

work finetunes a VLM model to not just predict points but rather entire 2D paths, making it more
broadly applicable across robotic tasks.

Trajectory-based predictions: The idea of using trajectory-based task specifications to condition
low-level policies was proposed in RT-trajectory (Gu et al., 2023), largely from the perspective of
flexible task specification. This work also briefly discusses the possibility of combining trajectory-
conditioned model with trajectory sketches generated by a pre-trained VLM. Complementary to
RT-Trajectory, the focus of this work is less on the use of trajectory sketches for task specifica-
tion, but rather a hierarchical design of VLAs such that the high-level VLM can be fine-tuned with
relative cheap and abundant data sources. This could include data such as action-free videos, or sim-
ulation data that look very different from the real world. We show that the emergent generalization
capability of VLMs from its web-scale pretraining allows it transfer to test scenarios of interest with
considerable visual and semantic variations. While RT-trajectory uses human effort or off-the-shelf
pre-trained VLMs to generate trajectories, we show that fine-tuning VLM models on cheap data
sources can generate significantly more accurate and generalizable trajectories (see Table. 5). More-
over, our instantiation of this architecture enables the incorporation of rich 3D and proprioceptive
information, as compared to monocular 2D policies (Gu et al., 2023).

Similarly, the emergence of track-any-point (TAP) models (Doersch et al., 2023; Wang et al., 2023)
has enabled policies conditioned on object trajectories (Yuan et al., 2024a; Xu et al., 2024; Bharad-
hwaj et al., 2024) or points sampled from a fixed grid in the image (Wen et al., 2023). While our
current formulation focuses on end-effector trajectories, this framework can naturally extend to pre-
dicting object trajectories or other motion cues. By leveraging the predictive capabilities of VLMs,
such an extension could further enhance the model’s ability to generalize across diverse scenarios
and improve its capacity for fine-grained motion reasoning.

Leveraging simulation data for training robot policies. There has been extensive work on lever-
aging simulation for robot learning. Simulation data is popular in reinforcement learning (RL),
as RL on real robotic systems is often impractical due to high sample complexity and safety con-
cerns (Lee et al., 2020; Handa et al., 2023; Torne et al., 2024). Recently, simulation has been also
exploited to directly generate (Fishman et al., 2022) or bootstrap (Mandlekar et al., 2023) large-scale
datasets for imitation learning, to reduce the amount of expensive robot teleoperation data needed.
Our work takes a different approach – using simulation data to finetune a VLM, and showing that
VLM is able to transfer the knowledge learned from simulation data to real robot systems, despite
considerable visual differences. A related observation is recently made by (Yuan et al., 2024b), but
they use keypoint affordances as the interface between the VLM and the low-level policy as opposed
to more general expressive 2D path representations.

3 BACKGROUND

Imitation Learning via Supervised Learning. Imitation learning trains a policy πθ(a | s, o, z)
from expert demonstrations, where s denotes proprioceptive inputs, o includes perceptual obser-
vations (e.g., RGB images, depth), and z provides task instructions. Given an expert dataset
D = {(si, oi, zi, ai)}Ni=1, the policy is optimized via maximum likelihood estimation, maximizing
E(si,oi,zi,ai)∼D [log πθ (ai | si, oi, zi)]. Despite advancements in architectures such as 3D policy
representations (Goyal et al., 2023; Ke et al., 2024), generalizing to novel semantic or visual vari-
ations remains challenging. In this paper, we explore how VLMs can enhance imitation learning
models for better generalization.

Vision-Language Models. VLMs (Liu et al., 2024a; Lin et al., 2024; Liu et al., 2024d) are large
transformer models (Vaswani et al., 2023) that accept both vision and text tokens to generate text
responses. They are pre-trained on extensive multimodal datasets (Zhu et al., 2023; Byeon et al.,
2022) and later fine-tuned on high-quality, task-specific data (Shen et al., 2021; Lu et al., 2022). By
tokenizing each modality into a shared space, these models autoregressively produce sequences of
text tokens conditioned on an image and prior tokens. In our work, we assume access to such a pre-
trained, text-and-image VLM (Lin et al., 2024; Liu et al., 2024d), further fine-tuned via a supervised
loss that minimizes the negative log-likelihood of the target tokens.

4

(a) VLM Path Prediction

Policy Input

Instruction: "Put
the object in the bowl."

z =

 Depth/3D
Observation

VLM response:
[(0.25, 0.1, 0),
 (0.29, 0.3, 0),
 (0.31, 0.4, 1),
(0.33, 0.5, 1)]

Instruction: "Put the spicy
food in the left bowl."

First Image o1

VLM Input

Image +
Path

HAMSTER
VLM

Low-Level

3D Policy
Proprio: [EEF pos, ,...]θ

Draw
2D Path

✍

at ot

(b) Low-Level Action Execution

Figure 2: Depiction of HAMSTER’s execution. The high-level VLM is called once to generate the 2D path.
The low-level policy is conditioned on the 2D path and interacts with the environment sequentially to execute
low-level actions. The path predicted by the VLM enhances the low-level policy generalization capability.

4 HAMSTER: HIERARCHICAL ACTION MODELS FOR ROBOTIC LEARNING

In this work, we examine how VLA models can leverage relatively abundant data and demonstrate
cross-domain transfer capabilities, as opposed to relying purely on expensive observation-language-
action data collected on a robot. HAMSTER is a family of hierarchical VLA models designed for
this purpose, exhibiting generalizable and robust manipulation. It consists of two interconnected
models: first, a higher-level VLM that is finetuned on large-scale, off-domain data to produce in-
termediate 2D path guidance (detailed in Section 4.1), and second, a low-level policy that produces
actions conditioned on 2D paths (detailed in Section 4.2).

The primary advantages of finetuning such a hierarchical VLM that produces intermediate repre-
sentations as opposed to directly producing actions a with a monolithic model (Kim et al., 2024;
Zitkovich et al., 2023; Black et al., 2024) are threefold: 1) our hierarchical VLM can leverage off-
domain datasets lack of precise actions, e.g., simulation and videos; 2) we find empirically that
hierarchical VLMs producing 2D paths generalize more effectively cross-domain than monolithic
VLA models; and 3) the hierarchical design provides more flexibility on the sensory modality, and
allows for asynchronous query of large high-level VLA models and small low-level policy models.

4.1 HAMSTER’S VLM FOR PRODUCING 2D PATHS TRAINED FROM OFF-DOMAIN DATA

The high-level VLM of HAMSTER predicts a coarse 2D path p to achieve the task given a monoc-
ular RGB image img and language instruction z, i.e., p̂ ∼ VLM(img, z). The 2D path p describes a
coarse trajectory of the robot end-effector, or human hand in the case of human videos, on the input
camera image. It also contains information about the gripper state. Formally, the 2D path is defined
as p = [(xt, yt,gripper opent)]t where xt, yt ∈ [0, 1] are normalized pixel locations of the end
effector’s (or hand) position at step t, and gripper opent is a binary value indicating the gripper
state, i.e., open and close.

Although, any pretrained text-and-image-input VLM (Lin et al., 2024; Liu et al., 2024d; Achiam
et al., 2023) can be used to predict such a 2D path by casting an appropriate prompt, we find that pre-
trained VLMs struggle with predicting such a path in a zero-shot manner (see Table 5). Therefore,
we finetune pre-trained VLMs on datasets that ground VLMs to robot scenes and path predictions
collected from easier-to-obtain sources, i.e., internet visual-question-answering data, robot data from
other modalities, and simulation data. This is in contrast to work such as Gu et al. (2023), where
pre-trained VLMs are tasked with directly performing spatially relevant path generation.

We use VILA-1.5-13b (Lin et al., 2024) as our base VLM, a 13-billion-parameter vision language
model trained on interleaved image-text datasets and video captioning data. Although it is possible
to curate a dataset on path prediction {(imgi, zi, pi)}i and train the VLM only on the dataset, the
literature (Brohan et al., 2023a; Yuan et al., 2024b) has shown that co-training the VLM on a variety
of relevant tasks, all framed as VQA tasks, can help retain the VLM’s generalization capability. To
this end, we curate a multi-domain dataset to finetune this model for effective 2D path prediction.

4.1.1 FINETUNING OBJECTIVE AND DATASETS.

Predicting the 2D path of the end-effector requires understanding what objects to manipulate in a
given task in terms of their pixel positions, but also reasoning about how a robot should perform the

5

Pixel Point Prediction
Simulated

Robot Data

Find all instances of

cushions

[(0.49, 0.38, 0.08, 0.06),

(0.53, 0.42, 0.07,

0.05),...]

Locate object between

the marked items

[(0.57, 0.48), (0.58,

0.49),(0.56, 0.45),

(0.55, 0.47), ...]

I
m

a
g

e

 im
g

I
n

s
tr

.
 z

P
a
th

s

 a
ns

Off Domain Robot Data

Screw in the green

light bulb

[(0.4, 0.6, close), (0.4,

0.6, close), (0.8, 0.7,

open)]

Cover the bowl with

the towel

[(0.2, 0.2, close), (0.3,

0.2, close), (0.1, 0.2,

close), (0.1, 0.3, open)]

Put the marker inside

the silver pot

[(0.7, 0.5, close), (0.5,

0.6, close), (0.6, 0.7,

close), (0.7, 0.6, open)]

Find spaces above the

bordered item

[(0.56, 0.69), (0.53,

0.76),(0.45, 0.72),

(0.43, 0.67), ...]

Figure 3: Off Domain Training Data: Doff contains (a) Pixel Point Prediction: 770k object location tasks
from RoboPoint. (b) Simulated Robot Data: 320k 2D end-effector paths from RLBench environment. (c) Real
Robot Data: 110k 2D end-effector paths from Bridge and DROID trajectories.

task. To enable this understanding, we collate a diverse off-domain dataset Doff from a wide range of
modalities, including real-world data, visual question-answering data, and simulation data. Impor-
tantly, none of this off-domain data used to train the VLM comes from the deployment environment,
thereby emphasizing generalizability.

We assemble a dataset Doff = {(imgi, zi, ansi)}Mi=1 of image inputs imgi, language prompts zi, and
answer ansi consisting of three types of off-domain data: (1) pixel point prediction tasks (what); (2)
simulated robotics tasks (what and how); (3) a real robot dataset consisting of trajectories (what and
how). We detail each dataset below; see Figure 3 for visualization of each dataset’s prompts and
corresponding answers.

Pixel Point Prediction. For pixel point prediction, we use the RoboPoint dataset (Yuan et al.,
2024b) with 770k pixel point prediction tasks, with most answers represented as a list of
2D points corresponding to locations on the image. A sample consists of a prompt z like
Locate object between the marked items, an input image img and answer ans like
[(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)].3 See the left of Figure 3 for an example. This dataset con-
sists of data automatically generated in simulation and collected from existing real-world datasets;
its diverse tasks enable the HAMSTER VLM to reason about pixel-object relationships across di-
verse scenes while retaining its semantic generalization capabilities.

Simulated Robot Data. We additionally generate a dataset of simulated robotics tasks from RL-
Bench (James et al., 2020), a simulator of a Franka robot performing tabletop manipulation for a
wide array of both prehensile and non-prehensile tasks. We use the simulator’s built-in planning al-
gorithms to automatically generate successful manipulation trajectories. Given a trajectory, we use
the first frame from the front camera as the image input img. We construct prompt z to instruct the
VLM to provide a sequence of points denoting the trajectory of the robot gripper to achieve the given
language instruction (see Figure 2). The ground-truth 2D path p = [(xt, yt,gripper opent)]t is
given by propriceptive projection using forward kinematics and camera parameters.

We generate 1000 episodes for each of 81 robot manipulation tasks in RLBench, each episode with
∼4 language instructions, for a total of around 320k (img, z, ans) tuples, where ans = p. See the
middle of Figure 3 for an example.

Real Robot Data. Using real robot data allows us to ensure the VLM can reason about objects
and robot gripper paths when conditioned on scenes, including real robot arms. We use existing,
online robot datasets not from the deployment environment to enable this VLM ability. We source
10k trajectories from the Bridge dataset (Walke et al., 2023; Collaboration et al., 2023) consisting of
a WidowX arm (different embodiment from test robot) performing manipulation tasks and around
45k trajectories from DROID (Khazatsky et al., 2024). We covert both datasets to VQA dataset in as
similar way as the simulated RL-Bench data, where the 2D paths are extracted from proprioception
and camera parameters (see the right of Figure 3 for an example). Note that we essentially utilize
the robot data as video data, where the end effector is tracked over time. In principle, this could be
done with any number of point-tracking methods (Doersch et al., 2023) on raw video as well, with
no action or proprioceptive labels.

3Note that this is not a temporally ordered path, but rather a set of unordered points of interest in an image.

6

We finetune the HAMSTER VLM on all three types of data by randomly sampling from
all samples in the entire dataset with equal weight. We also include a 660k-sample VQA
dataset (Liu et al., 2024c) for co-training to preserve world knowledge. We train with the
standardized supervised prediction loss to maximize the log-likelihood of the answers ans:
E(imgi,zi,ansi)∼Doff logVLM (ansi | imgi, zi).
Remark. One issue with simulation and real robot data is that the extracted 2D paths p can be
extremely long, e.g., exceeding one hundred steps. Since we want the HAMSTER VLM to reason
at a high level instead of on the same scale as the low-level control policy, we simplify the paths po
with the Ramer-Douglas-Peucker algorithm (Ramer, 1972; Douglas & Peucker, 1973) that reduces
curves composed of line segments to similar curves composed of fewer points. We refer readers to
Appendix G for an ablation study.

4.2 PATH GUIDED LOW-LEVEL POLICY LEARNING

The low-level policy of HAMSTER πθ(a | s, o, z, p) is conditioned on proprioceptive and perceptive
observations, (optional) language instruction and, importantly, 2D path. While a low-level control
policy can learn to solve the task without 2D path, the paths allow the low-level policy to forgo
long-horizon and semantic reasoning and focus on local and geometric predictions to produce robot
actions. As we find empirically (see Figure 4), 2D paths allow for considerably improved visual and
semantic generalization of low-level policies.

HAMSTER’s general path-conditioning framework allows lower-level policies to take in proprio-
ceptive and perceptual (e.g., depth images) observations, that are not input to the high-level VLM.
We consider low-level policies based on 3D perceptual information, i.e., o = (img, pointcloud),
available at test time on a robotic platform with standard depth cameras. We study two choices
of policy architecture, RVT-2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024) which has shown
state-of-the-art results on popular robot manipulation benchmark (James et al., 2020).

Conditioning on Paths. Most policy architectures use the form πθ(a | s, o, z) without 2D path
inputs. One naı̈ve option is to concatenate the path with proprioceptive or language inputs. However,
because 2D paths vary in length, the architecture must handle variable-length inputs. To incorporate
the 2D path p̂ from the VLM without major modifications, we alternatively overlay the 2D path
onto the image observation (Gu et al., 2023). Our implementation follows this approach by drawing
colored trajectories on all images in the trajectory o1i , . . . , o

T
i : points at each (xt, yt) are connected

with line segments using a color gradient to indicate temporal progression (see Figure 2(b)), and
circles mark changes in gripper status (e.g., green for closing, blue for opening). If the policy
architecture allows images with more than three channels, we can also include path drawing as
separate channels, instead of overlaying it on the RGB channel. We empirically study both drawing
strategies, overlay and concatenating channels, in section 5.3.

Policy Training. To train the policy, we collect a relatively small-scale task-specific dataset
D = {(si, oi, zi, ai)}Ni=1 on the robot hardware. During training, we use oracle 2D paths con-
structed by proprioception projection, similar to how the 2D paths are constructed for the VLM
training data, and construct path-labeled dataset Dpath = {(si, oi, zi, pi, ai)}Ni=1. We train a pol-
icy πθ(a | s, o, z, p) with standard supervised imitation learning objectives on Dpath to maximize
the log-likelihood of the dataset actions: E(si,oi,zi,pi,ai)∼Dpath log πθ(ai | si, oi, zi, pi). For further
implementation details, see Appendix B.

Inference Speed. Monolithic VLAs query the VLM at every action step (Kim et al., 2024; Bro-
han et al., 2023a), which can be very expensive with large VLMs. For example, OpenVLA’s 7B-
parameter VLA only runs at 6Hz on an RTX 4090 (Kim et al., 2024). Instead, HAMSTER’s hierar-
chical design allows us to query the VLM only one or few times during an episode to generate 2D
paths p̂ that can be followed by low-level policy for multiple steps. Therefore, HAMSTER can be
scaled to large VLM backbones without needing end-users to be concerned about inference speed.

5 EXPERIMENTAL EVALUATION

We evaluate our approach in both simulation and real-world experiments to the following key ques-
tions. Do hierarchical VLAs:

Q1 Generalize behaviors to unseen scenarios with significant visual and semantic variation?

7

pick up the green pepper

and put it in

the red bowl

pick up the banana and
put it in the black bowl

push down the object

with feather

pick up the smiley face

and put it in the

red bowl

pick up the garlic and

put it in the panpress down the left button

push down the
green bottle

Figure 4: Depiction of quantitative real-world policy execution results on a real-world robot, evaluated across
different axes of generalization and across both prehensile and non-prehensile tasks. Across all generalization
axes, HAMSTER outperforms monolithic VLAs and the base 3D imitation learning policies.

Q2 Achieve stronger cross-domain generalization than monolithic VLAs and low-level imita-
tion learning methods?

Q3 Facilitate learning of non-prehensile and long-horizon tasks?
Q4 Exhibit strong demonstration efficiency?
Q5 Have improved visual + semantic reasoning due to hierarchy and VLM fine-tuning?

5.1 REAL WORLD EVALUATION ON TABLETOP MANIPULATION

To answer Q1, our real-world evaluation experiments aim to test the generalization capability of
hierarchical VLA models across significant semantic and visual variations. In particular, we consider
a variant of HAMSTER that uses a VLM (VILA-1.5-13b (Lin et al., 2024)) finetuned on the data
mixture in Section 4.1 as the high-level predictor, with two low-level 3D policy architectures -
RVT-2 (Goyal et al., 2024) and 3D Diffuser Actor (3D-DA) (Ke et al., 2024) as choices of the low-
level policy, as described in Section 4.2. The low-level 3D policies are trained with 320 episodes
collected via teleoperation shown in Fig. 3. Importantly, the high-level VLM has not seen any in-
domain data and is only finetuned on the off-domain data described in Section 4.1. This suggests
that any generalization that the VLM shows result from cross-domain transfer.

Baseline comparisons. To answer Q2, we compare HAMSTER with a state-of-the-art monolithic
VLA, OpenVLA (Kim et al., 2024) as well as non-VLM 3D policies, RVT-2 (Goyal et al., 2024) and
3D-DA (Ke et al., 2024). For fair comparison, we finetune OpenVLA on the collected in-domain
data described above since OpenVLA showed poor zero-shot generalization. The 3D policy (RVT-2,
3D-DA) baselines are trained with the same teleoperation data used to train the low-level policy in
HAMSTER but without the intermediate 2D path representation from HAMSTER’s VLM.

Finetuning OpenVLA with RLBench. To ensure our method’s advantage over OpenVLA (Kim
et al., 2024) is not solely due to RLBench data, we fine-tuned OpenVLA on the same RLBench
dataset used for HAMSTER’s VLM—1,000 episodes per task across 81 tasks (using only episodes
with good front-camera visibility)—until achieving over 90% token accuracy (Kim et al., 2024).
We then fine-tuned this model on our tasks following the procedure in Appendix C.2. In real-world
pick-and-place experiments (6 trials over 6 “Basic” tasks as shown in Table 4), RLBench-finetuned
OpenVLA averaged a success score of 0.54 versus 0.58 for the model without RLBench fine-tuning.
This suggests that monolithic VLA architectures like OpenVLA gain little benefit from RLBench
data, likely due to mismatches in action and observation spaces relative to the real-world setup.

Quantitative Results. Figure 4 summarizes our real-world results. To answer Q3, we evaluate
across multiple task types, including ‘pick and place,’ and nonprehensile tasks such as ‘press but-
tons’ and ‘knock down objects.’ We also test generalization across various axes (Q1) – obj and goal:
unseen object-goal combinations; visual: visual changes in table texture, lighting, distractor objects;
language: unseen language instructions (e.g., candy → sweet object); spatial: unseen spatial object
relationships in the instruction; novel object: unseen objects; and lastly, multiple: a combination of
multiple variations. In total, we evaluate each model on 74 tasks for 222 total evaluations. Detailed
results and the success score metric are provided in Appendix Table 4.

8

Figure 5: Examples of various robot tasks and environments that HAMSTER can handle. See more details in
our teaser video at https://hamster-robot.github.io/.

pick up the garlic and
put it in the pan

HAMSTER Low-Level Policy

pick up the green
pepper and put it in the

red bowl

pick up the sweet object
and put it into
the red bowl

Figure 6: Example real-world HAMSTER rollouts demonstrate its strong performance in novel scenes
achieved by leveraging VLMs’ generalization capabilities and the robust execution of low-level 3D policies.

Qualitative Eval on Various Tasks. In addition to the quantitative evaluation conducted for com-
parison with OpenVLA, we also present qualitative results that demonstrate how HAMSTER’s hi-
erarchical structure enables low-level policy models to generalize to more complex tasks. Figure 5
illustrates the diverse tasks HAMSTER can handle, including unfolding a towel, opening and closing
drawers, pressing buttons, wiping surfaces, and cleaning tables. These tasks present challenges such
as varying lighting conditions, cluttered backgrounds, and semantic understanding requiring exter-
nal world knowledge. Additionally, HAMSTER demonstrates the ability to perform long-horizon
tasks—none of which are part of the in-domain training set used to train the policy model.

Overall, we find that HAMSTER significantly outperforms monolithic VLA models and (non-VLM)
3D policies by over 2x and 3x, respectively, on average. This is significant because this improved
performance is in the face of considerable visual and semantic changes in the test setting, show-
ing the ability of HAMSTER to generalize better than monolithic VLA models or non-VLM base
models. We further group results by task type in Table 6, where we see HAMSTER outperforms
OpenVLA across all task types (pick and place, press button, and knock down). See Appendix C for
evaluation conditions, a task list, and other experiment details, and Appendix E for failure modes.

9

https://hamster-robot.github.io/

Method Success

3D-DA 0.18 ± 0.10
HAMSTER+3D-DA (50%) 0.36 ± 0.04
HAMSTER+3D-DA 0.43 ± 0.05

Table 1: Results on Colosseum demon-
strate that HAMSTER is data efficient,
achieving 2X the success score of 3D-DA
with just 50% of the data.

Method Original Camera Novel Camera
Success Complete Success Complete

OpenVLA 0.60 0.30 0.23 0.00
HAMSTER+RVT2 0.83 0.70 0.73 0.40
HAMSTER+RVT2 (Concat) 1.00 1.00 0.98 0.90

Table 2: Real world results demonstrate HAMSTER general-
izes to better to novel camera views (see Fig.Figure 7). We ran
10 trails and report averaged success score (success) described
in Table 4 and number of successful executions (complete).

Avg. no var bac tex cam pos distractor lig col man obj col man obj siz

3D-DA[Ke et al.] 0.35± 0.04 0.43± 0.06 0.34± 0.07 0.35± 0.11 0.39± 0.11 0.44± 0.13 0.41± 0.04 0.41± 0.11
HAMSTER (w 3D-DA) 0.46 ± 0.04 0.57 ± 0.03 0.48 ± 0.08 0.39 ± 0.06 0.41 ± 0.05 0.59 ± 0.04 0.57 ± 0.08 0.51 ± 0.10

man obj tex rec obj col rec obj siz rec obj tex rlb and col rlb var tab col tab tex

3D-DA[Ke et al.] 0.27± 0.04 0.34± 0.10 0.36± 0.05 0.36± 0.12 0.07± 0.03 0.45± 0.12 0.42± 0.06 0.23± 0.04
HAMSTER (w 3D-DA) 0.48 ± 0.06 0.48 ± 0.05 0.40 ± 0.05 0.56 ± 0.09 0.11 ± 0.10 0.58 ± 0.04 0.56 ± 0.03 0.35 ± 0.07

Table 3: Simulation evaluation of HAMSTER across different visual variations. We test vanilla 3D Diffuser
Actor and HAMSTER across variations in Colosseum (Pumacay et al., 2024) and find that HAMSTER gener-
alizes more effectively than 3D Diffuser Actor. Avg. indicates mean across variations, including no variation.

5.2 SIMULATION EVALUATION

Overall Results. For further investigation into Q1, Q2, and Q3, we conducted a controlled sim-
ulation evaluation using Colosseum (Pumacay et al., 2024), which provides significant visual and
semantic variations across pick-place and non-prehensile tasks. Pairing our high-level VLM with
the state-of-the-art 3D-DA (Ke et al., 2024) policy on RLBench, we compared HAMSTER against
a vanilla 3D-DA implementation without path guidance. As shown in Table 3 over 5 seeds, HAM-
STER outperforms the vanilla approach by an average of 31%. This improvement stems from train-
ing with path-drawn images, which encourages the policy to focus on the path rather than extraneous
visual features, thereby enhancing robustness to visual variations. We refer readers to Pumacay et al.
(2024) for details on the variations and Appendix F for further simulation experiment details.

HAMSTER with Fewer Demonstrations. We also test HAMSTER’s ability to work well with
limited demonstrations to answer Q4. We test on a subset of 5 Colosseum tasks, namely,
SLIDE BLOCK TO TARGET, PLACE WINE AT RACK LOCATION, INSERT ONTO SQUARE PEG,
STACK CUPS, SETUP CHESS. Results in Table 1 demonstrate that HAMSTER+3D-DA with just
50% of the data still achieves 2x the success rate of standard 3D-DA, demonstrating that HAM-
STER is demonstration-efficient for the downstream imitation learning tasks.

5.3 VLM GENERALIZATION STUDIES

Finally, we perform additional experiments to answer Q5 on whether HAMSTER’s hierarchy en-
ables superior visual and semantic reasoning.

Figure 7: Camera positions for
view invariance: old (right) and
new (left).

Camera View Invariance. We test HAMSTER+RVT2 against
OpenVLA from a new camera angle (Figure 7) across 10 pick-
and-place trials using 6 training objects and 3 training containers
to check HAMSTER’s visual spatial reasoning. The results in Ta-
ble 2 show that HAMSTER significantly outperforms OpenVLA
and remains robust to new camera angles, benefiting from its VLM
trained on diverse off-domain tasks across various viewpoints. Ad-
ditionally, we compare HAMSTER+RVT2 (Concat), where instead
of overlaying the path on the input RGB image, we modify RVT-
2 to accept a 6-channel input by concatenating the original RGB
image with a separate RGB image containing only the drawn path.
We can easily apply this due to HAMSTER’s hierarchical nature.
Concatenated paths actually achieve the best performance, demon-
strating the effectiveness of this path representation, though it is less
general and not compatible with all imitation learning policy archi-
tectures (such as 3D-DA as it uses a pre-trained image encoder expecting 3 input channels). One
possible explanation is that RVT2’s virtual reprojection can fragment the 2D path when it is directly

10

Move the toy car

to the bowl with x

Place the cup on

the cup holder

Move the left block to

Jensen Huang

Screw the light bulb in

the lamp

Push the button with color of cucumber,

then press the button with color of fire

(a) (b) (c)

Figure 8: HAMSTER’s VLM demonstrates strong generalization to unseen scenarios. From left to right:
(a) leveraging world knowledge for user-specified tasks, (b) handling out-of-domain inputs like human-drawn
sketches, and (c) transferring from diverse simulations to visually distinct real-world tasks. Blue-to-red lines
indicate motion, with blue and red circles marking grasp and release points, respectively.

drawn on the image, making it harder for RVT2 to decode. By providing a dedicated path channel
(via concatenation), path guidance is preserved more effectively.

VLM Generalization. We further demonstrate the benefit of HAMSTER’s hierarchy by demon-
strating that the VLM generalizes well to visually unique and semantically challenging tasks due to
its off-domain fine-tuning. We visualize example HAMSTER path drawings in Figure 8, demon-
strating HAMSTER’s VLM itself effectively reasons semantically and visually for unseen tasks. We
further investigate VLM performance in Appendix D.1, where we find that (1) HAMSTER outper-
forms zero-shot path generation from closed-source VLMs (Gu et al., 2023; Liang et al., 2023) and
(2) that inclusion of simulation data improves HAMSTER’s real-world performance. Both results
point to the benefit of explicit hierarchy: off-domain VLM fine-tuning that improves its performance.
See Appendix D.1 for further details.

6 CONCLUSION AND LIMITATIONS

In summary, HAMSTER studies the potential of hierarchical VLA models, achieving robust gener-
alization in robotic manipulation. It consists of a finetuned VLM that accurately predicts 2D paths
for robotic manipulation and a low-level policy that learns to generate actions using the 2D paths.
This two-step architecture enables visual generalization and semantic reasoning across considerable
domain shifts, while enabling data-efficient specialist policies, like ones conditioned on 3D inputs,
to perform low-level action execution.

This work represents an initial step towards developing versatile, hierarchical VLA methods, with
numerous opportunities for future improvement and expansion. The proposed work only generates
points in 2D space, without making native 3D predictions. This prevents the VLM from having true
spatial 3D understanding. Moreover, the interface of just using 2D paths is a bandwidth limited one,
which cannot communicate nuances such as force or rotation. In the future, investigating learnable
intermediate interfaces is a promising direction. Moreover, training these VLMs directly from large-
scale human video datasets would also be promising.

ACKNOWLEDGEMENTS

We thank Wentao Yuan for generously providing the Robopoint dataset. We also acknowledge
Entong Su and Yunchu Zhang for their assistance in setting up the robot environment. We are
grateful for the support from the Army Research Lab through sponsored research, as well as the
Amazon Science Hub for Yi and Marius. We also thank Animesh Garg for many helpful discussions.
Finally, we extend our gratitude to Yao Lu, Hongxu Yin, Ligeng Zhu, Borys Tymchenko, and Zhijian
Liu from NVIDIA’s VILA group for their valuable support throughout this work.

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Bel-
gum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea

11

Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fish-
man, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Har-
ris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto,
Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Ni-
tish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik
Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kon-
draciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia
Lue, Anna Adeola Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing,
Tong Mu, Mira Murati, Oleg Murk, David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W.
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish,
Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rim-
bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin D. Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. In arxiv
preprint, 2023. URL https://arxiv.org/pdf/2303.08774.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Pre-
dicting point tracks from internet videos enables diverse zero-shot robot manipulation. arXiv
preprint arXiv:2405.01527, 2024.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,

12

https://arxiv.org/pdf/2303.08774

Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023b.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
Kim. Coyo-700m: Image-text pair dataset. https://github.com/kakaobrain/
coyo-dataset, 2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Kostas E. Bekris,
Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu,
Republic of Korea, July 10-14, 2023, 2023. doi: 10.15607/RSS.2023.XIX.026. URL https:
//doi.org/10.15607/RSS.2023.XIX.026.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao
Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters,
Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen
Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon
Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan
Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan
Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin
Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan
Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yun-
liang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Nor-
man Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun

13

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset
https://doi.org/10.15607/RSS.2023.XIX.026
https://doi.org/10.15607/RSS.2023.XIX.026

Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vin-
cent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
refinement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
10061–10072, 2023.

David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica, 10(2):112–
122, 1973. doi: 10.3138/FM57-6770-U75U-7727. URL https://doi.org/10.3138/
FM57-6770-U75U-7727.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied mul-
timodal language model. In International Conference on Machine Learning, pp. 8469–8488.
PMLR, 2023.

Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ran-
jay Krishna. Manipulate-anything: Automating real-world robots using vision-language models.
arXiv preprint arXiv:2406.18915, 2024.

Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots, and Dieter
Fox. Motion policy networks. In Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.), Conference
on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, volume 205
of Proceedings of Machine Learning Research, pp. 967–977. PMLR, 2022. URL https://
proceedings.mlr.press/v205/fishman23a.html.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt2: Learning precise
manipulation from few demonstrations. RSS, 2024.

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, Priya Sundaresan, Peng Xu,
Hao Su, Karol Hausman, Chelsea Finn, Quan Vuong, and Ted Xiao. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches, 2023.

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5977–5984. IEEE, 2023.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In Conference on
Robot Learning, pp. 540–562. PMLR, 2023a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through

14

https://arxiv.org/abs/2310.08864
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://proceedings.mlr.press/v205/fishman23a.html
https://proceedings.mlr.press/v205/fishman23a.html

planning with language models. In Conference on Robot Learning, pp. 1769–1782. PMLR,
2023b.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. In International Conference on Machine Learning, 2023.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In European Conference on Computer Vision,
pp. 18–35. Springer, 2025.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. In First Workshop on Vision-Language Models for Navigation and
Manipulation at ICRA 2024, 2024.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan-
nag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Bai-
jal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jack-
son, Charlotte Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mir-
chandani, Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor
Son, Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin,
Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta,
Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martı́n-Martı́n, Sub-
ramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu,
Thomas Kollar, Sergey Levine, and Chelsea Finn. Droid: A large-scale in-the-wild robot manip-
ulation dataset. 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Yuxuan Kuang, Junjie Ye, Haoran Geng, Jiageng Mao, Congyue Deng, Leonidas Guibas, He Wang,
and Yue Wang. Ram: Retrieval-based affordance transfer for generalizable zero-shot robotic
manipulation. arXiv preprint arXiv:2407.04689, 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

15

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-
training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 26689–26699, June 2024.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365,
2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic
manipulation through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024c.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024d.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning Representations, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, pp. 1820–1864. PMLR, 2023.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022.

Matthias Minderer, Alexey A. Gritsenko, and Neil Houlsby. Scaling open-vocabulary object de-
tection. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=mQPNcBWjGc.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. In Conference on Robot Learning, pp. 892–909.
PMLR, 2023.

Soroush Nasiriany, Sean Kirmani, Tianli Ding, Laura Smith, Yuke Zhu, Danny Driess, Dorsa
Sadigh, and Ted Xiao. Rt-affordance: Affordances are versatile intermediate representations
for robot manipulation. arXiv preprint arXiv:2411.02704, November 2024a. URL https:
//arxiv.org/abs/2411.02704.

16

https://openreview.net/forum?id=mQPNcBWjGc
https://arxiv.org/abs/2411.02704
https://arxiv.org/abs/2411.02704

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
Driess, Ayzaan Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting elicits actionable knowl-
edge for vlms. In International Conference on Machine Learning, 2024b.

Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
Darrell, and Roei Herzig. LLARVA: Vision-action instruction tuning enhances robot learning.
In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/
forum?id=Q2lGXMZCv8.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In international conference on machine
learning, pp. 17359–17371. PMLR, 2022.

Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Krishna, Jesse Thomason, and Dieter Fox. The
colosseum: A benchmark for evaluating generalization for robotic manipulation. arXiv preprint
arXiv:2402.08191, 2024.

Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, and Jitendra Malik. Robot
learning with sensorimotor pre-training. In Conference on Robot Learning, pp. 683–693. PMLR,
2023.

Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer
Graphics and Image Processing, 1(3):244–256, 1972. ISSN 0146-664X. doi: https://doi.org/10.
1016/S0146-664X(72)80017-0. URL https://www.sciencedirect.com/science/
article/pii/S0146664X72800170.

Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In
International Conference on Machine Learning, pp. 9465–9476. PMLR, 2021.

Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl, Daniel S. Weld, and Doug Downey. Incor-
porating visual layout structures for scientific text classification. ArXiv, abs/2106.00676, 2021.
URL https://arxiv.org/abs/2106.00676.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Sumedh Anand Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. In
NeurIPS, 2023.

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
Wohlhart, Sean Kirmani, Brianna Zitkovich, Fei Xia, et al. Open-world object manipulation using
pre-trained vision-language models. In Conference on Robot Learning, pp. 3397–3417. PMLR,
2023.

Priya Sundaresan, Suneel Belkhale, Dorsa Sadigh, and Jeannette Bohg. Kite: Keypoint-conditioned
policies for semantic manipulation. In Conference on Robot Learning, pp. 1006–1021. PMLR,
2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. Robotics: Science and Systems, 2024.

17

https://openreview.net/forum?id=Q2lGXMZCv8
https://openreview.net/forum?id=Q2lGXMZCv8
https://www.sciencedirect.com/science/article/pii/S0146664X72800170
https://www.sciencedirect.com/science/article/pii/S0146664X72800170
https://arxiv.org/abs/2106.00676

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot
Learning (CoRL), 2023.

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski,
and Noah Snavely. Tracking everything everywhere all at once. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 19795–19806, 2023.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. In
International Conference on Machine Learning, 2024.

Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
trajectory modeling for policy learning. arXiv preprint arXiv:2401.00025, 2023.

Mengda Xu, Zhenjia Xu, Yinghao Xu, Cheng Chi, Gordon Wetzstein, Manuela Veloso, and Shuran
Song. Flow as the cross-domain manipulation interface. In 8th Annual Conference on Robot
Learning, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR,
2023.

Chengbo Yuan, Chuan Wen, Tong Zhang, and Yang Gao. General flow as foundation affordance for
scalable robot learning. arXiv preprint arXiv:2401.11439, 2024a.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction in robotics. In 8th Annual Conference on Robot Learning, 2024b. URL https:
//openreview.net/forum?id=GVX6jpZOhU.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Kostas E. Bekris, Kris Hauser, Sylvia L. Herbert, and
Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023, 2023. doi: 10.15607/RSS.2023.XIX.016. URL https://doi.org/10.15607/RSS.
2023.XIX.016.

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Young-
jae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal C4: An open, billion-
scale corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

18

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=GVX6jpZOhU
https://doi.org/10.15607/RSS.2023.XIX.016
https://doi.org/10.15607/RSS.2023.XIX.016

Hamster VLM: VILA-1.5-13b

(a) VLM Training on !off (b) Low-level Policy Training on !

Find all instances
of cushions

[(0.49, 0.38,
0.08, 0.06),
(0.53, 0.42,
0.07, 0.05)]

I
m

a
g

e

 im
g

I
n

s
tr

.

 z
P

a
th

s

 a
ns

Put the wine bottle
in the wine rack

[(0.1, 0.5, close),
(0.1, 0.5, close),
(0.7, 0.7, close),
(0.8, 0.7, open)]

[(0.2, 0.2, close),
(0.3, 0.2, close),
(0.1, 0.2, close),
(0.1, 0.3, open)]

Cover the bowl
with the towel

Low-Level 3D Policy

Image and Path Proprio/Sensor s

Put the object in
the bowl

Instr. z

[EEF pos, ,...] +
depth

θ

[x, y, z,]θ1, θ2, …

L
o

w
-l

e
v
e
l

 A
c
ti

o
n

s

Point Data Sim Data Robot Data In-Domain Data

Figure 9: (a): Examples of training data in Doff used to train HAMSTER’s VLM. (b): The data used
to train HAMSTER’s low-level policies.

A VLM FINETUNING DATASET DETAILS

Pixel Point Pred Data. Our point prediction dataset comes from Robopoint (Yuan et al., 2024b).
770k samples in our point prediction dataset contain labels given as a set of unordered points such
as po = [(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)], or bounding boxes in [(cx, cy, w, h)] style. Other
than that, following Robopoint (Yuan et al., 2024b), we use the VQA dataset Liu et al. (2024c)
with 660k samples which answer VQA queries in natural language such as “What is the person
feeding the cat?” We keep these data as is because these VQA queries are likely to benefit a VLM’s
semantic reasoning and visual generalization capabilities; we fine-tune HAMSTER’s VLM on the
entire Robopoint dataset as given.

Simulation Data. We selected 81 RLBench tasks out of 103 to generate data by removing tasks
with poor visibility on the front cam view in RLBench. We use the first image in each episode
combined with each language instruction. The final dataset contains around 320k trajectories.

Real Robot Data. For the Bridge (Walke et al., 2023) dataset, which only provides RGB images,
we extract trajectories by iteratively estimating the extrinsic matrix for each episode. In each scene,
we randomly sample a few frames and manually label the center of the gripper fingers. Using the
corresponding end-effector poses, we compute the 3D-2D projection matrix with a PnP (Perspective-
n-Point) approach. We then apply this projection matrix to the episodes and manually check for any
misalignments between the projected gripper and the actual gripper. Episodes exhibiting significant
deviations are filtered out, and a new round is started to estimate their extrinsic matrix.

For DROID (Khazatsky et al., 2024), a large portion of the dataset contains noisy camera extrinsics
information that do not result in good depth alignment. Therefore, we filter out trajectories with
poor-quality extrinsics as measured by the alignment between the projected depth images and the
RGB images. This results in ∼45k trajectories (∼22k unique trajectories as trajectories each have
2 different camera viewpoints) which we use for constructing the VLM dataset Doff as described in
Section 4.1.

B IMPLEMENTATION AND ARCHITECTURE DETAILS

B.1 VLM IMPLEMENTATION DETAILS

VLM Prompt. We list the prompt for both fine-tuning on sim and real robot data and evaluation in
Figure 10. We condition the model on an image and the prompt, except when training on Pixel Point
Prediction data (i.e., from Robopoint (Yuan et al., 2024b)) where we used the given prompts from
the dataset. Note that we ask the model to output gripper changes as separate language tokens, i.e.,
Open Gripper/Close Gripper, as opposed to as a numerical value as shown in simplified
depictions like Figure 2.

19

HAMSTER Prompt

In the image, please execute the command described in ⟨quest⟩{quest}⟨/quest⟩.
Provide a sequence of points denoting the trajectory of a robot gripper to achieve the goal.
Format your answer as a list of tuples enclosed by ⟨ans⟩ and ⟨/ans⟩ tags. For example:
⟨ans⟩[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), ⟨action⟩Open

Gripper⟨/action⟩, (0.74, 0.21), ⟨action⟩Close Gripper⟨/action⟩,
...]⟨/ans⟩
The tuple denotes the x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.

Figure 10: The full text prompt we use to train HAMSTER with on simulation and real robot data
(Section 4.1). We also use this prompt for inference.

VLM Trajectory Processing. As mentioned in Section 4.1, one problem with directly training on
the path labels po is that many paths may be extremely long. Therefore, we simplify the paths po with
the Ramer-Douglas-Peucker algorithm (Ramer, 1972; Douglas & Peucker, 1973) that reduces curves
composed of line segments to similar curves composed of fewer points. We run this algorithm on
paths produced by simulation and real robot data to generate the labels po for Doff. We use tolerance
ϵ = 0.05, resulting in paths that are around 2-5 points for each short horizon task.

VLM Training Details. We train our VLM, VILA1.5-13B Lin et al. (2024), on a node equipped
with eight NVIDIA A100 GPUs, each utilizing approximately 65 GB of memory. The training
process takes about 30 hours to complete. We use an effective batch size of 256 and a learning rate
of 1× 10−5. During fine-tuning, the entire model—including the vision encoder—is updated.

B.2 LOW-LEVEL POLICY TRAINING DETAILS

We train RVT2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024) as our lower-level policies. We
keep overall architecture and training hyperparameters the same as paper settings. Specific details
about how the inputs were modified other than the 2D path projection follow.

For low-level policy training, we train the policies on ground truth paths constructed by projecting
trajectory end-effector points to the camera image. In order to also ensure the policies are robust
to possible error introduced by HAMSTER VLM predictions during evaluation, we add a small
amount of random noise (N(0, 0.01)) to the 2D path (x, y) image points during training to obtain
slightly noisy path drawings. No noise was added to the gripper opening/closing indicator values.

RVT2 (Goyal et al., 2024). We remove the language instruction for RVT-2 when conditioning on
HAMSTER 2D paths.

3D-DA (Ke et al., 2024). In simulated experiments in Colosseum, no changes were needed. In
fact, we saw a performance drop for HAMSTER+3D-DA when removing language for Colosseum
tasks and a small drop in performance when using simplified language instructions. This is likely
due to 3D-DA’s visual attention mechanism which cross attends CLIP language token embeddings
with CLIP visual features, therefore detailed language instructions are beneficial.

In real-world experiments, we simplify the language instruction in the same way as for RVT2 when
conditioning on HAMSTER 2D paths to encourage following the trajectory more closely with lim-
ited data. In addition, we reduced the embedding dimension of the transformer to 60 from 120,
removed proprioception information from past timesteps, and reduced the number of transformer
heads to 6 from 12 in order to prevent overfitting.

C REAL WORLD EXPERIMENT DETAILS

20

RT-Trajectory GPT-4o Prompt

In the image, please execute the command described in ’{quest}’.
Provide a sequence of keypoints denoting a trajectory of a robot gripper to achieve the goal. Keep in mind
these are keypoints, so you do not need to provide too many points.
Format your answer as a list of tuples enclosed by <ans> and </ans> tags. For example:
<ans>[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), <action>Open
Gripper</action>, (0.74, 0.21), <action>Close Gripper</action>,
...]</ans>
The tuple denotes point x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.
The current position of the robot gripper is: {current position}. Do not include this point in your answer.

Figure 11: The full text prompt we use to prompt RT-Trajectory with GPT4-o.

RT-Trajectory Code as Policies Prompt

Task Instruction: {task instruction}
Robot Constraints:

• The robot arm takes as input 2D poses with gripper open/closing status of the form
(x, y, gripper open == 1)

• The gripper can open and close with only binary values

• The workspace is a 1× 1 square centered at (0.5, 0.5)

• The x-axis points rightward and y-axis points downward.

Please write Python code that generates a list of 2D poses and gripper statuses for the robot to follow.
Include Python comments explaining each step. Assume you can use numpy or standard Python libraries,
just make sure to import them.
Enclose the start and end of the code block with <code> and </code> so that it can be parsed. Make
sure that it is a self-contained script such that when executing the code string, there is a variable named
robot poses which is a list of poses of the form: [(x, y, gripper), (x, y, gripper),
...].
Scene Description:

<code>
{scene_description}
</code>

Figure 12: The full text prompt we use for RT-Trajectory with Code-as-Policies on top of GPT4-o.
The scene description at the bottom comes from an open-vocabulary object detector describing each
detected object and its bounding box in the image based on the task instruction.

21

C.1 TRAINING TASKS AND DATA COLLECTION

For our real-world experiments, we collected all data using a Franka Panda arm through human
teleoperation, following the setup described in Khazatsky et al. (2024). Below, we describe the
training tasks:

Pick and place. We collected 220 episodes using 10 toy objects. In most of the training data, 2
bowls were placed closer to the robot base, while 3 objects were positioned nearer to the camera.
The language goal for training consistently followed the format: pick up the {object} and
put it in the {container}.

Knock down objects. We collected 50 episodes with various objects of different sizes. Typically,
3 objects were arranged in a row, and one was knocked down. The language goal for training
followed the format: push down the {object}.

Press button. We collected 50 episodes with 4 colored buttons. In each episode, the gripper was
teleoperated to press one of the buttons. The language goal followed the format: press the
{color} button.

When training RVT2, which requires keyframes as labels, in addition to labeling frames where the
gripper performs the open gripper and close gripper actions, we also included frames
that capture the intermediate motion as the gripper moves toward these keyframes.

C.2 BASELINE TRAINING DETAILS

OpenVLA (Kim et al., 2024). Following Kim et al. (2024), we only utilize parameter efficient
fine-tuning (LoRA) for all of our experiments, since they showed that it matches full fine-tuning
performance while being much more efficient. We follow the recommended default rank of r=32.
We opt for the resolution of 360 x 360 to match all of the baseline model’s resolutions. We also
follow the recommended practice of training the model until it surpasses 95% token accuracy. How-
ever, for some fine-tuning datasets, token accuracy converged near 90%. We selected the model
checkpoints when we observed that the token accuracy converged, which usually required 3,000
to 10,000 steps using a global batch size of either 16 or 32. Training was conducted with 1 or 2
A6000 gpus (which determined the global batch size of 16 or 32). Emprically, we observed that
checkpoints that have converged showed very similar performance in the real world. For example,
when we evaluate checkpoint that was trained for 3,000 steps and showed convergence, evaluating
on a checkpoint trained for 5,000 steps of the same run resulted in a very similar performance.

RT-Trajectory (Gu et al., 2023). We implement two versions of RT-Trajectory for the comparison
in Table 5. The first (0-shot GPT-4o) directly uses GPT-4o to generate 2D paths with a prompt very
similar to the one we use for HAMSTER, displayed in Figure 11.

The second version implements RT-Trajectory on top of a Code-as-Policies (Liang et al., 2023), as
described in RT-Trajectory. We use OWLv2 (Minderer et al., 2023) to perform open-vocabulary
object detection on the image to generate a list of objects as the scene description and then prompt
RT-Trajectory with the prompt shown in Figure 12. We also use GPT-4o as the backbone for this
method.

C.3 EVALUATION TASKS

We evaluate our method on the tasks of pick and place, knock down object, and press
button across various generalization challenges, as illustrated in Figure 4. Detailed results are
available in Table 4. Following (Kim et al., 2024), we assign points for each successful sub-action.
For VLM, human experts are employed to assess the correctness of the predicted trajectories.

22

Category Task OpenVLA RVT2 RVT2+Sketch 3DDA 3DDA+Sketch
Basic pick up the corn and put it in the black bowl 1 1 1 0 0.25
Basic pick up the grape and put it in the white bowl 1 0.75 1 0 1
Basic pick up the milk and put it in the white bowl 0 1 1 0 0.25
Basic pick up the salt bottle and put it in the white bowl 0.75 0.5 1 0 0
Basic pick up the shrimp and put it in the red bowl 0.75 0.5 1 0 1
Basic pick up the cupcake and put it in the red bowl 0 0.5 0.5 0.25 1
Basic press down the red button 0.5 0 1 0 1
Basic press down the green button 0 1 0 0 0.25
Basic press down the yellow button 0 0 1 0 1
Basic press down the blue button 0.5 0 1 0 0.5
Basic push down the green bottle 0.5 0 0.5 0 1
Basic push down the pocky 0 1 1 0 0.5
Basic push down the red bag 0.5 0.5 0 0 0.5
Basic push down the bird toy 0 0 0 0 0.5
Basic push down the yellow box 1 0 1 0 0.5

Object and Goal pick up the salt bottle and put it in the white bowl 1 1 1 0.5 1
Object and Goal pick up the banana and put it in the black bowl 0.25 0.25 1 0.5 1
Object and Goal pick up the grape and put it in the black bowl 1 0.25 0.5 1 1
Object and Goal pick up the carrot and put it in the red bowl 0.75 0 1 0.5 1
Object and Goal pick up the milk and put it in the white bowl 0.25 0 1 0 0.25
Object and Goal pick up the shrimp and put it in the white bowl 0.25 0.75 0.5 0.25 1
Object and Goal pick up the cupcake and put it in the black bowl 0.25 0 1 0.5 0.75
Object and Goal pick up the icecream and put it in the black bowl 0.25 0 0.5 0.5 1
Object and Goal pick up the corn and put it in the red bowl 1 0 1 1 1
Object and Goal pick up the green pepper and put it in the red bowl 0.75 0 0.5 0 0.25
Object and Goal pick up the orange and put it in the white bowl 0.25 0 0 0 0

Visual(Table Texture) pick up the salt bottle and put it in the white bowl 1 1 1 0 1
Visual(Table Texture) pick up the banana and put it in the black bowl 0.25 0.25 0.75 0.5 0.75

Visual(lighting) pick up the grape and put it in the black bowl 0.25 0 0.5 0.25 0
Visual(lighting) pick up the carrot and put it in the red bowl 0.75 0 1 0 0.75
VIsual(clutter) pick up the milk and put it in the white bowl 0.75 0.25 1 0.25 1
VIsual(clutter) pick up the shrimp and put it in the red bowl 0.75 0.5 0 0 0.5

Visual(mix) pick up the green pepper and put it in the red bowl 0.25 0 1 0 0.25
Visual(mix) pick up the salt bottle and put it in the white bowl 0.25 0 0.25 0.25 1

Visual(appearance change) pick up the green pepper and put it in the black bowl 1 0 0.5 0 1
Visual(appearance change) pick up the salt bottle and put it in the black bowl 1 1 1 0 1

Visual(Table Texture) press down the red button 1 1 0 0 0.5
Visual(lighting) press down the green button 1 0 0.5 0 0.5
VIsual(clutter) press down the yellow button 0 0 0.5 0 0.5

Visual(mix) press down the blue button 0 0 0 0 0.5
Visual(Table Texture) push down the pocky 0 1 0 0 0

VIsual(clutter) push down the green bottle 1 0.5 1 0 1
VIsual(clutter) push down the chocolate box 1 0 0 0 1

Visual(mix) push down the green bottle 0 0 0.5 0 1
Language pick up the sweet object and put it in the red bowl 1 1 1 0 1
Language pick up the spicy object and put it in the red bowl 1 0 1 0 0.75
Language pick up the salty object and put it in the red bowl 0 0 1 0 1
Language pick up the object with color of cucumber and put it in the red bowl 0 0 1 0.25 0.75
Language pick up the object with color of lavender and put it in the black bowl 0 0 1 0 1

Language pick up the object with the color of sky
and and put it in the container with the color of coal 1 0 0 0.25 1

Language pick up the block with the color of sunflower
and put it in the container with the color of enthusiasm 0 0.25 1 0 1

Language press the button with the color of fire 0.5 0 1 0 0.5
Language press the button with the color of cucumber 0 0 1 0 0.5
Language press the button with the color of sky 0 0 0 0.5 1
Language press the button with the color of banana 0 0 0 0 0.5
Language push down the object with color of leaf 0 1 1 0 0
Language push down the box contains cruchy biscuit 0 0 0 0 1
Language push down the bag with color of fire 0 0 1 0 0.5
Language push down the object with feather 0.5 0 1 0 1

Spatial pick up the left object and put it in the left bowl 0 1 1 0.25 1
Spatial pick up the middle object and put it in the left bowl 0 0 1 0 1
Spatial pick up the right object and put it in the left bowl 1 0 0.5 0.25 0.5
Spatial pick up the left object and put it in the right bowl 0.25 0.25 1 0.25 1
Spatial pick up the middle object and put it in the right bowl 0 0 1 0 1
Spatial pick up the right object and put it in the right bowl 0.5 0 1 0 1
Spatial press down the left button 0.5 0 0 0 0.5
Spatial press down the middle button 0 0 1 1 0.5
Spatial press down the right button 0 0 1 1 1
Spatial push down the left object 0.5 0 0 0 0
Spatial push down the middle object 1 0.5 0 0 1
Spatial push down the right object 0.5 0 0.5 0.5 1

Novel Object pick up the ”R” and put it in the red bowl 0 0 1 0 1
Novel Object pick up the boxed juice and put it in the red bowl 0 0.75 0.75 1 1
Novel Object pick up the cholate bar and put it in the white bowl 0.25 0 0.5 0.5 1
Novel Object pick up the smile face and put it in the red bowl 1 0 1 0 1
Novel Object pick up the mouse and put it in the red bowl 0 0.25 1 0 1
Novel Object pick up the 5 and put it in the white bowl 0 0 0 0 0.25

Multiple pick up the lays chip and put it in the pan 0.25 0.25 0.75 0 1
Multiple pick up the garlic and put it in then pan 0.25 0 1 0 0.25
Multiple pick up the ”K” and put it in the pan 0.25 0 0.5 0 1
Multiple pick up the pocky and put it in the pan 0 0.25 0 0.25 0.25

Table 4: Detailed results of real-world evaluation. The first column indicates the variation category,
while the second column presents the language instruction. For the pick and place task, 0.25
points are awarded for each successful action: reaching the object, picking it up, moving it to the
target container, and placing it inside. For the knock down task, 0.5 points are awarded for touch-
ing the correct object and successfully knocking it down. For the press button task, 0.5 points
are awarded for positioning the gripper above the correct button and successfully pressing it.

23

Original Image Hamster w/o Sim Data Hamster RT-Trajectory (CaP) RT-Trajectory (GPT4-o)

Instr: Screw in the

light bulb on the

lamp

Instr: Move the

block on the right

to Taylor Swift

Instr: Press the

button with color of

leaf, then press the

button with color of

banana

Figure 13: Human VLM evaluation example images and instructions along with corresponding
trajectories from HAMSTER without any finetuning on (RLBench) simulation data, HAMSTER
finetuned on all the data in Section 4.1, RT-Trajectory (Gu et al., 2023) with Code-as-Policies (Liang
et al., 2023) powered by GPT-4o (Achiam et al., 2023), and RT-Trjaectory powered by GPT-4o
directly.

D EXTENDED RESULTS

D.1 IMPACT OF DESIGN DECISIONS ON VLM PERFORMANCE

To better understand the transfer and generalization performance of the proposed hierarchical VLA
model, we analyze the impact of various decisions involved in training the high-level VLM. We con-
duct a human evaluation of different variants of a trained high-level VLM on a randomly collected
dataset of real-world test images, as shown in Figure 8. We ask each model to generate 2D path
traces corresponding to instructions such as “move the block on the right to Taylor Swift” or “screw
the light bulb in the lamp” (the full set is in Appendix D.2). We then provide the paths generated by
each method to human evaluators who have not previously seen any of the models’ predictions. The
human evaluators then rank the predictions for each method; we report the average rank across the
samples in Table 5.

We evaluate the following VLM models: (1) zero-shot state-of-the-art closed-source models such as
GPT-4o using a similar prompt to ours (shown in Figure 11), (2) zero-shot state-of-the-art closed-
source models such as GPT-4o but using Code-as-Policies (Liang et al., 2023) to generate paths as
described in Gu et al. (2023) (prompt in Figure 12), (3) finetuned open-source models (VILA-1.5-
13b) on the data sources described in Section 4.1, but excluding the simulation trajectories from the
RLBench dataset, (4) finetuned open-source models (VILA-1.5-13b) on the data sources described
in Section 4.1, including path sketches from the RLBench dataset. The purpose of these evaluations
is to first compare with closely related work that generates 2D trajectories using pretrained closed
source VLMs Gu et al. (2023) (Comparison (1) and (2)). The comparison between (3) and (4) (our
complete method) is meant to isolate the impact of including the simulation path sketches from the
RLBench dataset. In doing so, we analyze the ability of the VLM to predict intermediate paths to
transfer across significantly varying domains (from RLBench to the real world).

The results suggest that: (1) zero-shot path generation, even from closed-source VLMs Gu et al.
(2023) such as GPT-4o with additional help through Code-as-Policies (Liang et al., 2023), under-
performs VLMs finetuned on cross-domain data as in HAMSTER; (2) inclusion of significantly
different training data such as low-fidelity simulation during finetuning improves the real-world per-

24

Method VLM Finetuning Rank Rank Rank
Data Exc. Real RLB. Real RLB. All

RT-Traj. 0-shot GPT-4o - 3.40 3.63 3.47
RT-Traj. CaP GPT-4o - 3.57 3.36 3.41
HAMSTER VILA Our Exc. Sim RLB. 1.78 2.39 2.13
HAMSTER VILA Our 1.59 1.28 1.40

Table 5: Ranking-based human evaluation of different VLMs, averaged across various real-world evaluation
tasks. Results indicate that HAMSTER including simulation data is most effective since it captures both spatial
and semantic information across diverse tasks from RLBench. This significantly outperforms zero-shot VLM-
based trajectory generation, as described in Gu et al. (2023)

formance of the VLM. This highlights the transferability displayed by HAMSTER across widely
varying domains. These results emphasize that the hierarchical VLA approach described in HAM-
STER can effectively utilize diverse sources of cheap prior data for 2D path predictions, despite
considerable perceptual differences.

D.2 VLM REAL WORLD GENERALIZATION STUDY

The full list of task descriptions for this study is below (see Appendix D.1 for the main experiment
details). Duplicates indicate different images for the same task. We plot some additional comparison
examples in Figure 13. Note that the path drawing convention in images for this experiment differ
from what is given to the lower-level policies as described in Section 4.2 as this multi-colored line
is easier for human evaluators to see.

1. screw in the light bulb on the lamp

2. screw in the light bulb on the lamp

3. screw in the light bulb on the lamp

4. screw out the light bulb and place it on the holder

5. screw out the light bulb and place it on the holder

6. screw in the light bulb

7. screw in the light bulb on the lamp

8. move the blue block on Taylor Swift

9. pick up the left block and put it on Jensen Huang

10. move the block on the right to Taylor Swift

11. place the yellow block on Kobe

12. pick up the blue block and place it on Jensen Huang

13. move the red block to Kobe

14. press the button on the wall

15. press the button to open the left door

16. press the button to open the right door

17. open the middle drawer

18. open the bottom drawer

19. open the top drawer

20. open the middle drawer

21. open the bottom drawer

22. press the button

23. press the button

24. press the orange button

25

25. press the orange button with black base
26. press the button
27. pick up the SPAM and put it into the drawer
28. pick up the orange juice and put it behind the red box
29. pick up the tomato soup and put it into the drawer
30. pick up the peach and put it into the drawer
31. move the mayo to the drawer
32. move the dessert to the drawer
33. pick up the object on the left and place it on the left
34. pick up the fruit on the left and put it on the plate
35. pick up the milk and put it on the plate
36. press the button with the color of cucumber, then press the button with color of fire
37. press the button with color of banana
38. press the button with color of leaf
39. press the button with color of leaf, then press the one with color of banana
40. press left button
41. pick up the left block on the bottom and stack it on the middle block on top
42. make I on top of C
43. put number 2 over number 5
44. stack block with lion over block with earth
45. pick up the left block on the bottom and stack it on the middle block on top
46. stack the leftest block on the rightest block
47. stack the block 25 over block L
48. put the left block on first stair

D.3 HUMAN RANKING

Figure 14: An example of results for human ranking. The trajectory is from blue to red with blue
circle and red circle denotes gripper close point and open point respectively. The grader is asked to
provide a rank to these trajectory about which trajectory has highest chance to succeed.

Due to the variety of possible trajectories that accomplish the same task, we use human rankings
to compare how likely produced trajectories are to solve the task instead of quantitative metrics
such as MSE. To do that, we generate trajectories for 48 image-question pairs with HAMSTER w/o
RLBench, HAMSTER, Code-as-Policy (Liang et al., 2023), and GPT4o (Achiam et al., 2023). See
Figure 14 for an example.

We recruit 5 human evaluators, who are robot learning researchers that have not seen the path outputs
of HAMSTER, to grade these 4 VLMs based on the instruction: “Provide a rank for each method (1
for best and 4 for worst). In your opinion, which robot trajectory is most likely to succeed. Traj goes
from blue to red, blue circle means close gripper, red circle means open gripper.” The evaluators

26

are allowed to give multiple trajectories the same score if they believe those trajectories are tied.
As they are robot learning researchers, they are familiar with the types of trajectories that are more
likely to succeed. Therefore, these rankings act as a meaningful trajectory quality metric.

E FAILURE ANALYSIS

Figure 15: Performance Distribution of RVT2+Sketch and 3DDA+Sketch

This section outlines the failure modes observed during our experiments and provides a detailed
breakdown of the causes. Failures can be attributed to issues in trajectory prediction, trajectory
adherence, and action execution.

E.1 DIFFERENT FAILURE MODES

Trajectory Prediction Failures The Vision-Language Model (VLM) may fail to predict the cor-
rect trajectory due to several factors:

- Failure to understand the language goal: Although the VLM demonstrates strong capabilities in
handling diverse task descriptions, it struggles when the training set lacks similar tasks. This can
cause the model to misunderstand the goal and make inaccurate predictions.

- Incorrect trajectory prediction: In some cases, the VLM predicts an incorrect trajectory, either by
interacting with the wrong objects or misinterpreting the direction of the affordance.

- Dynamic changes in the environment: Since trajectories are generated at the beginning of a task,
significant environmental changes during execution can lead to failure. The model lacks the ability
to dynamically adjust the trajectory or reidentify the object initially referenced.

Trajectory Adherence Failures Failures in adhering to the predicted trajectory arise primarily
due to:

- 3D ambiguity: The use of 2D trajectory predictions introduces ambiguities, such as determining
whether a point is positioned above or behind an object, leading to execution errors.

- Incorrect object interaction: The low-level action model is not explicitly constrained to strictly
follow the predicted trajectory. As a result, it may deviate, interacting with the wrong object and
causing task failures.

Action Execution Failures Even when the trajectory is correctly predicted and adhered to, action
execution may still fail due to:

- Execution-specific issues: Despite training on a diverse set of actions, the model may fail during
execution. For example, in grasping tasks, an incorrect grasp angle can cause the object to slip,
resulting in a failed grasp.

27

E.2 FAILURE ANALYSIS

Our analysis in Figure 15 reveals distinct failure tendencies across methods.

For RVT, 72% of failures stemmed from the low-level model failing to follow the trajectory, while
28% were due to execution failures. In contrast, for 3DDA, only 10% of failures were related to
trajectory adherence, with 90% attributed to execution failures.

We hypothesize that this discrepancy arises because RVT incorporates a re-projection step, compli-
cating trajectory adherence. In contrast, 3DDA leverages a vision tower that processes the original
2D image, simplifying trajectory interpretation.

F SIMULATION EXPERIMENT DETAILS

Figure 16: Colosseum benchmark
variations. Figure from Pumacay
et al. (2024), taken with permis-
sion.

Our simulation experiments are performed on Colos-
seum (Pumacay et al., 2024), a simulator built upon RL-
Bench (James et al., 2020) containing a large number of
visual and task variations to test the generalization per-
formance of robot manipulation policies (see Figure 16
for a visualization of a subset of the variations). We
use the front camera and remove all tasks in which
the camera does not provide a clear view of the objects
in the task, resulting in 14 out of 20 colosseum tasks
(we remove basketball in hoop, empty drawer,
get ice from fridge, move hanger, open drawer,
turn oven on).

Colosseum contains 100 training episodes for each task, with-
out any visual variations, and evaluates on 25 evaluation
episodes for each variation. We follow the same procedure
other than using just the front camera instead of multiple
cameras. We report results in Table 3 after removing variations
with no visual variations (e.g., object friction).

Task RVT2 3DDA OpenVLA HAMSTER+RVT2 HAMSTER+3DDA
pick and place 0.28 0.19 0.46 0.79 0.78
press button 0.13 0.16 0.25 0.50 0.63
knock down 0.17 0.03 0.41 0.47 0.66

Table 6: Real world average success rates grouped by task type.

G DIFFERENT WAYS OF REPRESENTING 2D
PATHS

To investigate the effect of the number of points on the 2D path, we train the VLM to predict 1.
paths simplified using RDP algorithm, which simplify paths in short horizon tasks to 3-5 points and
is what we used in the paper. We denote these paths as RDP in the following; 2. Paths represented
with 20 points sampled on the path with same step size, denoted as 20p in the following. We keep
points where the gripper is executing operation of open or close in both methods.

We train the network on RLBench 80 tasks with 1000 episodes for each task and test it on 25
episodes on the task of close jar. We tried both VILA1.5-3B (denoted as 3B) and VILA1.5-13B
(denoted as 13B) as our backbone. Thus we have in total 4 combinations over 2 backbones and 2
designs of path representations. We visualize the result in this Figure 17.

From this result we can see that when using smaller models, like VILA1.5-3B, paths represented
using points extracted using RDP algorithm outperforms paths represented with a fixed number of
20 points significantly. When the network becomes larger to the level of 13B, the VLM is able

28

Figure 17: The task is to pick up the lid and close it on the jar with correct color. Task description
is located on the top-left corner of each image. The trajectory goes from blue to red where blue
circles denotes where the gripper should close and red circles denotes where the gripper should
open. GT denotes ground truth, 3B and 13B denotes VILA1.5-3B and VILA1.5-13B, RDP denotes
paths simplified using Ramer–Douglas–Peucker algorithm while 20p denotes paths reprensented
using 20 points.

to handle the representation using 20 points and both two path representations work perfectly. We
believe that is because when points are simplified using the RDP algorithm, we usually need less
points to represent the path and helps the model to pay more attention to predict the accurate position
for the gripper open/close points.

29

	Introduction
	Related Work
	Background
	HAMSTER: Hierarchical Action Models for Robotic Learning
	HAMSTER's VLM for producing 2D Paths Trained from Off-Domain Data
	Finetuning Objective and Datasets.

	Path Guided Low-Level Policy Learning

	Experimental Evaluation
	Real World Evaluation on Tabletop Manipulation
	Simulation Evaluation
	VLM Generalization Studies

	Conclusion and Limitations
	VLM Finetuning Dataset Details
	Implementation and Architecture Details
	VLM Implementation Details
	Low-level Policy Training Details

	Real World Experiment Details
	Training Tasks and Data Collection
	Baseline Training Details
	Evaluation Tasks

	Extended Results
	Impact of Design Decisions on VLM performance
	VLM Real World Generalization Study
	Human Ranking

	Failure Analysis
	Different Failure Modes
	Failure Analysis

	Simulation Experiment Details
	Different ways of representing 2D Paths

