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Abstract

Long-form video understanding is complicated by the high
redundancy of video data and the abundance of query-
irrelevant information. To tackle these challenges, we pro-
pose VIDEOTREE, a training-free framework which builds
a query-adaptive and hierarchical video representation for
LLM reasoning over long-form videos. First, VIDEOTREE
extracts query-relevant information from the input video
through an iterative process, progressively refining the se-
lection of keyframes based on their relevance to the query.
Furthermore, VIDEOTREE leverages the inherent hierarchi-
cal structure of long video data, which is often overlooked by
existing LLM-based methods. Specifically, we incorporate
multi-granularity information into a tree-based representa-
tion, allowing VIDEOTREE to extract query-relevant details
from long videos in a coarse-to-fine manner. This enables
the model to effectively handle a wide range of video queries
with varying levels of detail. Finally, VIDEOTREE aggre-
gates the hierarchical query-relevant information within the
tree structure and feeds it into an LLM reasoning model to
answer the query. Our experiments show that our method
improves both reasoning accuracy and efficiency. Specif-
ically, VIDEOTREE outperforms existing training-free ap-
proaches on EgoSchema and NExT-QA with less inference
time, achieving 61.1% and 75.6% accuracy on the test set
without additional video-specific training. Moreover, on the
long split of Video-MME (average 44 minutes), VIDEOTREE
achieves better performance than GPT-4V and many other
MLLMs that were extensively trained on video data.

1. Introduction
With the surge in accessible long video content and the grow-
ing importance of applications such as long-form human
behavior analysis and movie analysis, developing models

*Equal contribution.
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Figure 1. Overview of VIDEOTREE for LLM reasoning on long
videos. Given the long video input, we first apply adaptive breadth
expansion to identify the first-level keyframes for VIDEOTREE.
Next, we use relevance-guided depth expansion to explore the
inherent hierarchical structure of the video, forming a tree-based
representation. Finally, the coarse-to-fine information extracted by
VIDEOTREE is fed into the LLM reasoner to answer the query.

capable of reasoning over and answering questions about
long-form videos has become increasingly crucial. Recently,
several approaches [19, 72, 89] have emerged that leverage
the long-sequence reasoning capabilities of Large Language
Models (LLMs) to tackle the challenge in long-form video
understanding in a training-free manner. Typically, these
approaches leverage vision-language models (VLM) to cap-
tion densely sampled frames, thus representing the video in
text format. This text representation is then subsequently fed
into an LLM, which reasons over the video and responds
to the provided query. Although this strategy has demon-
strated great potentials on long-form video understanding
benchmarks, it still faces two major limitations:

1) Informational Overload: Long videos inherently con-
tain high levels of information redundancy, and current ap-
proaches [7, 89] lack a principled method to effectively ad-
dress this challenge. A deluge of redundant and irrelevant
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information can overwhelm the LLM, leading to mistakes in
long-form video reasoning and reduced efficiency.
2) Inability to Capture the Coarse-to-Fine Video Struc-
ture: Existing approaches [67, 89] often simplify video
content into a list of captions without any structure, failing to
account for the hierarchical nature of video information. Es-
pecially in long videos, some regions are information-dense –
requiring fine-grained temporal understanding – while others
are irrelevant to the query, or information-sparse. Because
of this, existing approaches not only suffer from overload
problems, as mentioned above, but also omit key information
from the captions, leading to missed details.

These limitations underscore the pressing need for a new
long-form video understanding method. To this end, we
introduce VIDEOTREE, a training-free framework for long-
form video understanding. VIDEOTREE dynamically ex-
tracts query-relevant keyframes from the video input in
a coarse-to-fine manner and organizes them within a tree
structure, with child nodes representing more fine-grained
information. VIDEOTREE is adaptive, meaning that our
method allocates more frames to relevant video regions and
fewer frames to irrelevant ones based on the given query.
VIDEOTREE is also hierarchical. Unlike existing approaches
[67, 89], which treat video as a list of frames, we explore the
inherent structure within the video data (e.g., events, scenes)
to extract fine-grained information relevant to the query.

VIDEOTREE relies on three crucial steps: adaptive
breadth expansion (Fig. 1a), relevance-guided depth ex-
pansion (Fig. 1b), and LLM-based reasoning (Fig. 1c).
To address redundancy in long videos, VIDEOTREE first
leverages an adaptive breadth expansion module to extract
query-relevant information, forming the initial level of repre-
sentation. We utilize an iterative process of visual clustering,
keyframe captioning, and relevance scoring until sufficient
query-relevant information is gathered. Compared to exist-
ing approaches [19, 89] that rely on dense frame captions,
VIDEOTREE selects only sparse keyframes for captioning,
which significantly improves inference efficiency and helps
avoid irrelevant information that could interfere with accu-
rate video reasoning. To capture more fine-grained infor-
mation, we introduce a relevance-guided depth expansion
step that adds finer, query-specific details in a hierarchical
structure, forming a tree-based representation. Finally, we
generate video descriptions from the structured represen-
tation using a captioner and provide them, along with the
query, to the LLM for long video reasoning.

We demonstrate the effectiveness and efficiency of
VIDEOTREE by evaluating it on two mainstream long video
question answering (LVQA) datasets, EgoSchema [42]and
NExT-QA [81]. Compared existing training-free approaches,
VIDEOTREE achieves 2.1% and 4.3% improvements on
EgoSchema(subset) and NExT-QA validation set with less in-
ference time or LLM calls. To further validate VIDEOTREE

effectiveness on very long videos, we test our method on
the long split of the recent Video-MME benchmark [10] and
VIDEOTREE achieves better performance than the strong
proprietary GPT-4V model. Our ablation studies show that
VIDEOTREE outperforms the the same category methods
(VideoAgent [67] and LLoVi [89]) under all number of
captions and observes better efficiency-effectiveness trade-
off. We further provide addition results on open-source
LLM, where VIDEOTREE shows strong generalization abil-
ity across different language backbone models and achieves
4.8% improvements against the LangRepo approach [19].

2. Related Work

Structural Video Representation. Video understand-
ing [26, 30, 32, 34, 35, 39, 52, 56, 61, 64, 74, 76, 78, 83] has
shown impressive advancement in both views of comprehen-
sion and efficiency. Recently, several video-language meth-
ods [1, 15, 28, 38, 50, 53, 77, 80, 84, 85, 87, 88] have further
introduced a structured understanding of video frames to
allow compact and efficient recognition of scene contexts.
For example, HierVL [1] proposes a bottom-up hierarchical
video-language embedding that capture video representa-
tions across short and long time periods. VideoReCap [15]
introduces a progressive video captioning approach that gen-
erates short clip-level captions and summarizes them into
longer segments. These methods process long videos by
progressively building high-level knowledge from local tem-
poral information, i.e. in a bottom-up fashion that first cap-
tures all low-level details and then aggregates. This results
in significant computational and time overhead. In contrast,
inspired by the existing coarse-to-fine video understanding
works [73, 79], VIDEOTREE proposes a novel top-down ap-
proach with a tree structure, enabling efficient and effective
long video understanding by dynamically extracting query-
relevant keyframes for LLM reasoning.

Video Understanding with LLMs. Inspired by the pow-
erful reasoning capabilities of LLMs, recent works have ex-
plored using LLMs to address complex video-related tasks.
Since LLMs primarily process text, various methods [2, 12,
18, 22, 25, 27, 29, 31, 40, 44, 59, 71, 75, 90? ] have been de-
veloped to efficiently train multimodal projectors to connect
the visual encoder and LLMs or leverage caption-centric
information. Past works [6, 9, 19, 21, 58, 60, 65, 67, 72]
has investigated training-free combinations of captioners and
LLMs for video understanding. Specifically, LLoVi [89] pro-
poses a simple language-guided video understanding method.
First, it extracts short-term video descriptions with a cap-
tioning model, and then an LLM summarizes these dense
captions and responds to the given prompt. VideoAgent [67]
introduces a multi-round frame search strategy using an
LLM agent. Unlike existing approaches, we propose a novel



method to extract the key information from videos in an adap-
tive and coarse-to-fine manner with the agent, improving
both efficiency and performance on long video understand-
ing tasks. Moreover, VIDEOTREE improves interpretability
by highlighting key visual clues for LLM reasoning via its
human-readable tree structure.

3. VIDEOTREE Method

We present VIDEOTREE, a framework for constructing a
query-adaptive, hierarchical video representation for effi-
cient LLM reasoning over long videos. As illustrated in
Fig. 2, the VIDEOTREE framework consists of three main
steps: adaptive breadth expansion, relevance-guided depth
expansion, and LLM video reasoning. Given the highly re-
dundant nature of long videos, VIDEOTREE first leverages an
adaptive breadth expansion module to extract query-relevant
information from the video, forming the initial level of rep-
resentation (Sec. 3.1). To capture finer-grained details, we
propose a relevance-guided depth expansion module that
progressively adds finer-grained, query-specific details to in
a hierarchical manner, forming a tree-based representation
(Sec. 3.2). Finally, we extract the video description from
the constructed tree representation by using a captioner to
caption selected frames. We feed it, along with the query,
into the LLM for long video reasoning (Sec. 3.3).

3.1. Adaptive Breadth Expansion

Video data is often highly redundant, and long videos can
contain substantial amounts of irrelevant information rela-
tive to the given video query. Addressing this redundancy
and filtering out irrelevant content is crucial for efficient and
effective long video understanding. Existing approaches
[66, 86] select a fixed number of keyframes as the key
information. However, as discussed in Sec. 1, this fixed
keyframe selection is sub-optimal for a general long video-
language understanding framework, since the information
density varies across videos—some contain numerous scene
changes, while others remain largely static. To address this,
we propose an adaptive breadth expansion module that con-
structs the first level of the tree representation by dynamically
identifying keyframes that are relevant to the given query.
Specifically, as shown in the left of Fig. 2 (Step 1), given
the video and a query about it, we build the first level of the
tree by iterating three operations: visual clustering, cluster
captioning, and relevance scoring. These operations first
group similar frames together, then generate captions for
each cluster, and use the LLM to determine how relevant
each cluster is to the query. VIDEOTREE iterate these opera-
tions until getting enough query-relevant information from
long videos in an adaptive manner. In the following para-
graphs, we provide a detailed motivation and introduction
for each operation.

Visual Clustering. To reduce the redundancy, we first
propose a visual clustering operation that groups the video
frames based on semantic similarity, allowing the model
to focus on representative frames from each cluster while
discarding repetitive or irrelevant content. Specifically, given
a video sequence V = (F1, F2..., Fn), where Fi is the frame
at the time step i and n is the length of the video, we extract
visual features for each frame with the pre-trained visual
encoder [57] E, such that fi = E(Fi), where fi ∈ Rd is
the visual features extracted by the frame Fi. These features
serve as a compact representation of each frame’s visual
content, capturing diverse semantics of each frame, such as
scenes and objects. We then use K-Means clustering [41] to
group frame features into k distinct clusters based on their
similarity, which we denote as:

(C1, . . . , Ck), (c1, . . . , ck) = K-Means((f1, . . . , fn), k) (1)

where, Ci is the ith cluster that groups multiple frames, ci
is the centroid vector for the ith cluster and k is the number
of clusters. This clustering process reduces the redundancy
within the video by converting the input from n frames into
k clusters of similar frames (where n≫ k), effectively sum-
marizing the video into k keyframes (cluster center frame)
that capture the essential semantics.

Cluster Captioning. To better extract the key semantics
from each cluster, we leverage a captioner to convert the
keyframe information (a single frame or short clip around
the keyframe) from each cluster to a textual description.
Specifically, for the cluster Ci, we find the keyframe Fi

that is closest to the centroid vector ci and consider it as
the keyframe of the ith cluster. We then feed the extracted
keyframe (or the key clip) into the VLM-based captioner
Cap(·) [36, 93] and obtain a text caption ti = Cap(Fi) for
each cluster. These text captions serve as detailed descrip-
tions of the key semantics from the corresponding clusters.

Relevance Scoring. To encourage the model to extract
query-relevant information, after obtaining the cluster cap-
tions t, we leverage the reasoning capability of the LLM to
assess whether the extracted information are sufficient for
answering the given query. To this end, we first feed all
cluster captions {ti ∀i ∈ [1, . . . , k]} from the last operation
and the video query Q into the LLM and output a set of
relevance scores {ri ∀i ∈ [1, . . . , k]} for each cluster, where
ri is the relevance of the ith cluster. Specifically, to obtain
each ri, we prompt the LLM with the captions and the query,
asking it to assign a relevance score to each caption, with
three levels: 1 (not relevant), 2 (somewhat relevant), and 3
(highly relevant). See Tab. 16 for all detailed prompts.

Then, we adaptively extract the query-relevant informa-
tion within the video by iterating the clustering, captioning,
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Figure 2. A detailed view of VIDEOTREE. To construct the tree structure, we begin with Adaptive Breadth Expansion (Step 1), which
dynamically extracts query-relevant key information, considering both video and question inputs. Then, starting from the highly relevant root
nodes, we explore deeper into the tree branches with Relevance-guided Depth Expansion (Step 2), re-clustering at each level to capture finer
visual cues. Finally, we gather the selected nodes (keyframes), caption them, and arrange them in temporal order for LLM reasoning (Step 3).

and relevance scoring operation. Specifically, given the list
of relevance scores for each cluster, we set a threshold of
the number of highly relevant clusters rele_num_thresh
to decide the stop of the adaptive process. We also set a
maximum value for the number of clusters (max_breadth)
to avoid infinite loops. If the number of highly relevant clus-
ters is below the requirement, that indicates the information
extracted from the current cluster assignment is insufficient
for the LLM to answer the video query. In that case, we
increase the number of clusters k by double the original
number and repeat the clustering, captioning, and relevance
scoring operations. If the number of high-relevance clus-
ters meets the threshold rele_num_thresh or the number
of clusters reaches max_breadth, we append the extracted
clusters with their keyframes to the tree’s first layer and con-
tinue to the next step (Algorithm 1, lines 2-11 for details).

3.2. Relevance-Guided Depth Expansion
After obtaining the first-level clusters and their keyframes,
VIDEOTREE captures high-level query-relevant information
from the video input. However, some video regions are
information-dense and critical for answering the query, re-
quiring a more detailed selection of keyframes.

Existing approaches, such as SeViLA [86] and VideoA-
gent [67], typically treat the selected frames as an unstruc-
tured list, overlooking the potential internal structure within
the video data. To address this, as shown in Step 2 of Fig. 2,

we construct a hierarchical video representation on top of the
clusters from the previous breadth expansion step, allowing
us to efficiently extract query-relevant details by leveraging
the semantic relationships within the video data. Specifically,
we expand the depth of the tree by sub-clustering the clusters
with higher relevance scores from the first step. The intu-
ition is that for high-relevance clusters, the LLM requires
more detailed, granular information, while for low-relevance
clusters, more information could actually lead to irrelevant
details being included and could thus overwhelm the LLM,
leading to incorrect reasoning.

To build the hierarchical structure, we use the relevance
of a top-level cluster to determine how many levels of more
granular information will be extracted from it. Since the
relevance score r falls into one of three levels, we handle
each first-level cluster differently based on its assigned rele-
vance level. For "somewhat relevant" clusters, we re-cluster
the first-level cluster into w sub-clusters, where w repre-
sents the tree’s branch width, ensuring that more keyframes
are allocated to these moderately relevant clusters. For
"highly relevant" clusters, we re-cluster into a two-level
tree with a branch width of w using hierarchical cluster-
ing while keeping the 1st-level cluster information from the
previous K-Means step. This coarse-to-fine exploration strat-
egy allows for the detailed extraction of relevant informa-
tion, supporting comprehensive video analysis for complex



queries. We repeat this process for all first-level medium-
and highly-relevant clusters and build the hierarchical struc-
ture of VIDEOTREE (lines 12-15 in Algorithm 1). After the
breadth and depth expansion steps, we obtain the tree-based
video representation for LLM reasoning over the long video.

3.3. LLM Video Reasoning
Finally, in order to use the LLM’s ability on video reasoning,
we need to present the LLM with a text-based video descrip-
tion. To this end, we traverse the nodes of the tree starting at
the roots and expanding to the leaves, extracting keyframes
from the tree’s clusters at all levels and passing them into
the captioner to obtain keyframe (short clip) captions. We
then sort these keyframe (short clip) captions in temporal
order and concatenate them into a textual description of the
video. Finally, we pass this description and the input query
to the LLM and output the final answer (see line 16-18 in
Algorithm 1). Our full prompt is in Tab. 17.

4. Experimental Setup
Tasks & Datasets. We test VIDEOTREE on three di-
verse long-form video question-answering benchmarks: (1)
EgoSchema [42], a long-range video question-answering
benchmark consisting of 5K multiple choice question-
answer pairs spanning 250 hours of video and covering a
wide range of human activities. Our ablation studies are
conducted on the official validation set of EgoSchema which
contains 500 questions (referred to as the EgoSchema Sub-
set). The videos are 180 seconds long on average. (2) NExT-
QA [81], a video question-answering benchmark for causal
and temporal reasoning. It contains 5440 videos with an av-
erage length of 44s and approximately 52K questions. NExT-
QA contains 3 different question types: Temporal (Tem.),
Causal (Cau.), and Descriptive (Des.). (3) Video-MME [10]
is a recent-proposed comprehensive evaluation benchmark
for video analysis. We test VIDEOTREE on the “long-term
videos” split of the dataset (long split), whose average video
length is 44 minutes, ranging from 30-60 minutes.

Implementation Details. We adopt GPT-41 [46] as our
LLM for all the main results. We also provide the results with
open-source LLM (Sec. 5.2) and other proprietary LLMs
(Sec. 9). Following VideoAgent [67], we leverage EVA-
CLIP-8B [57] as our visual encoder and also provide ex-
perimental analysis with smaller visual encoder in Sec. 5.2.
Following VideoAgent [67], we leverage CogAgent [13] as
the captioner for NExT-QA benchmark and use LaViLa [93]
as our captioner for the EgoSchema benchmark due to its
ego-centric video pretraining (we also show results in Tab. 14
using a unified captioner (LLaVA1.6-7B [36]) for all bench-
marks). For Video-MME, we directly use the default unified

1version 1106

LLaVA1.6-7B captioner. We preprocess videos by simply
sampling the original frames at 1FPS for EgoSchema and
NExT-QA benchmark and 0.125 FPS for Video-MME. The
best-performing average number of captions for EgoSchema
subset, Next-QA and Video-MME is 62.4, 12.6 and 128, re-
spectively. We ablate our hyper-parameter choices in Sec. 9.

Evaluation Metrics. We evaluate VIDEOTREE on all
datasets under the multiple-choice QA setting. We utilize
standard accuracy metrics for all experiments.

5. Results

5.1. Comparison with Existing Approaches
Comparison with training-free methods. Sec. 5.1 shows
a comparison of the existing training-free works and
VIDEOTREE on EgoSchema and NExT-QA benchmarks.
We compare our methods with three types of systems: those
using all open-source LLMs [19, 51, 54], those with propri-
etary MLLMs [20, 49], and the most similar class to ours,
which consists of methods with open-source captioners and
proprietary LLMs [6, 9, 43, 65, 67, 72, 89]. Specifically,
compared with the methods that leverage the same VLM
(captioner) and LLM [67, 72, 89], VIDEOTREE significantly
outperforms these methods on both EgoSchema and NExT-
QA benchmarks. Comparing with VideoAgent [9] which
also uses video-specific models (Video-LLaVA [30], Vi-
CLIP from InternVid [69]) which were trained on extensive
video data, VIDEOTREE still performs better on EgoSchema.
Moreover, comparing with the methods that utilize strong
multimodal LLMs, VIDEOTREE significantly outperforms
IG-VLM [20] (based on GPT-4V[45]) on both EgoSchema
and NExT-QA benchmarks and obtains comparable results
on the EgoSchema full test set compared to the recent LVNet
[49] (which uses the more powerful GPT-4o for both cap-
tioner and LLM) while outperforming LVNet on NExT-QA
benchmarks. Additionally, we observe a significant gap
between VIDEOTREE and the open-source LLM-based ap-
proaches, highlighting the need of strong LLM reasoning
module in our method. For the sake of making a fair compar-
ison, we also show VIDEOTREE’s ability using open-source
LLM in Tab. 4, where we obtain an 4.8% improvement on
the EgoSchema subset. These results showcase the effective-
ness of VIDEOTREE compared with existing training-free
methods. Moreover, VIDEOTREE is also more efficient: we
show analyses measuring the number of captions in Fig. 3
and inference time in Tab. 3, where VIDEOTREE is more
efficient than relevant baselines.

1We de-emphasize the EgoSchema results of LangRepo since it predicts
the answers via a log-likelihood classifier rather than generation, making
it different from all other methods (including VIDEOTREE). We provide a
comparison using the same classifier and LLM in Tab. 4 and show 4.8%
improvements under same settings.



Model (M)LLM EgoSchema NExT-QA

Sub. Full Tem. Cau. Des. Avg.

Based on Open-source Captioners and LLMs
MVU [51] Mistral-13B 60.3 37.6 55.4 48.1 64.1 55.2
LangRepo [19] Mixtral-8×7B 66.21 41.2 51.4 64.4 69.1 60.9
Video-LLaVA+INTP [54] Vicuna-7B v1.5 - 38.6 58.6 61.9 72.2 62.7

Based on Proprietary MLLMs
IG-VLM [20] GPT-4V 59.8 - 63.6 69.8 74.7 68.6
LVNet [49] 2 GPT-4o 68.2 61.1 65.5 75.0 81.5 72.9

Based on Open-source Captioners and Proprietary LLMs
ProViQ [6] GPT-3.5 57.1 - - - - 64.6
LLoVi [89] GPT-3.5 57.6 50.3 - - - -
MoReVQA [43] PaLM-2 - 51.7 64.6 70.2 - 69.2
Vamos [65] GPT-4 51.2 48.3 - - - -
LLoVi [89] GPT-4 61.2 - 61.0 69.5 75.6 67.7
VideoAgent [67] GPT-4 60.2 54.1 64.5 72.7 81.1 71.3
VideoAgent [9] GPT-4 62.8 60.2 - - - -
LifelongMemory [72] 3 GPT-4 64.1 58.6 - - - -

VIDEOTREE (Ours) GPT-4 66.2 61.1 70.6 76.5 83.9 75.6

Table 1. Comparison with other training-free methods on EgoSchema and NExT-QA.
VIDEOTREE outperforms the existing approaches on all evaluation metrics.

Method Acc

Proprietary MLLM
GPT-4V 53.5
GPT-4o 65.3
Gemini 1.5 Pro 67.4

Open-Source MLLM
LongVA 46.2
VITA 48.6
InternVL2-34B 52.6
VILA-1.5-40B 53.8
Oryx-1.5-34B 59.3
LLaVA-NeXT-Video-72B 61.5
Qwen2-VL-72B 62.2

Training-free Approach
LLoVi 48.8
VIDEOTREE (Ours) 54.2

Table 2. Video-MME long split re-
sults. VIDEOTREE outperforms the strong
proprietary GPT-4V model and many
other specially-trained open-souce video
MLLMs (e.g. InternVL2-34B, VILA-1.5-
40B) despite being training-free.

Evaluating on Very Long Videos. To further highlight the
strength of our approach on longer videos, we incldue results
on Video-MME [10]’s long split, which contains a diverse
set of very long videos (up to 1 hour, with an average of 44
minutes). We compare our training-free method with three
types of models, including proprietary MLLMs [8, 45, 47]
and open-source MLLM [3, 4, 11, 37, 63, 66, 91, 92], both
of which are trained on large-scale video(image) data, and
training-free baseline LLoVi [89]. As shown in Sec. 5.1,
compared to the training-free baseline, LLoVi, VIDEOTREE
achieves a substantial 5.4% improvement on the long split of
the Video-MME benchmark, demonstrating its effectiveness
in understanding videos across long time-scales. Compared
to proprietary MLLMs, VIDEOTREE outperforms the strong
GPT-4V [45] model by 0.7%. However, there is still a gap
between VIDEOTREE and powerful long-context proprietary
MLLMs (GPT-4o [47], Gemini 1.5 Pro [8]). When compar-
ing to open-source MLLMs that were extensively trained
on video data, our training-free VIDEOTREE method outper-
forms a number of these strong MLLMs including ViLA-1.5-
40B [33] and Intern-VL2 [4]. VIDEOTREE achieves strong
performance without additional training on long video data.

5.2. Analysis
Below, we provide a detailed analysis of VIDEOTREE frame-
work. All quantitative analyses are conducted on the valida-

2For fair comparison, we de-emphasize methods that use a much
stronger MLLM (GPT-4o) as both the captioner and the LLM.

3Reproduced results, implementation details in Sec. 11

tion subset of the EgoSchema dataset. First, we analyze the
trade-off between efficiency and effectiveness, showing that
our method has better efficiency and performance across
all settings compared to existing methods. We then pro-
vide an comprehensive ablation study for different design
choice of VIDEOTREE. Finally, we visualize the tree from
VIDEOTREE and show the clusters VIDEOTREE chooses to
expand, qualitatively supporting its quantitative gains.

5.2.1. Efficiency-Effectiveness Analysis
In Tab. 3, we show the efficiency-effectiveness trade-off of
our approach compared to existing methods. Specifically,
we compare VIDEOTREE with LLoVi [89] using the same
GPT-4 model as LLM (and same captioner). Comparing
to the best model, LLoVi, VIDEOTREE-fast (which uses
fewer frames by changing the hyper-parameters) achieves
a 2.4% improvement on the EgoSchema subset with only
33% the time cost. Moreover, our best model obtains a 5.0%
improvement with less overall inference time compared to
both LLoVi models. Profiling the inference time spent in
different modules (including frame captioning, extracting
keyframes/caption summarization, performing QA), we find
that our hierarchical keyframe selection consumes a reason-
able amount of time while significantly reducing the time
cost in the captioning stage and boosting long video un-
derstanding performance. We also provide an ablation of
average LLM calls and compared with VideoAgent [67] in
Tab. 9 showing that VIDEOTREE requires fewer LLM calls
while having better performance. These results show that



Method Captions Captioner (s) Keyfr. (s) QA (s) Overall (s) Acc.

LLoVi-fast 16 2.0 0 1.9 3.9 57.8
LLoVi-best 180 22.4 0 2.4 24.8 61.2

VIDEOTREE-fast 13.6 1.6 4.4 1.8 7.8 63.6
VIDEOTREE-best 62.4 7.8 10.2 2.1 20.1 66.2

Table 3. Efficiency-Effectiveness comparison between LLoVi and our approach. We benchmark the time cost of VIDEOTREE and LLoVi [89],
split into seconds spend in frame captioning, extracting keyframes, performing QA, and also report overall time. Using only 33% inference
time, VIDEOTREE(fast) already achieves both better performance compared to LLoVi(best).

Method # Caption Acc. Inf Time (s)

Based on Mistral-7B
LLoVi 180 50.8 -
LangRepo 180 60.8 87.2
VIDEOTREE (ours) 32 63.0 24.3

Based on Mistral-8×7B (12B)
LangRepo 180 66.2 162.1
VIDEOTREE (ours) 32 71.0 50.3

Table 4. Accuracy on the EgoSchema subset when using open-
source LLM Reasoners and log-likelihood classifier. VIDEOTREE

obtains better performance with less inference time on both 7B and
12B LLMs comparing to the LangRepo baseline [19].

Module ES Acc.

VIDEOTREE 66.2
- Depth Expansion 64.4
- Adaptive Breadth Expansion 61.2

Table 5. Effect of different VIDEOTREE components. Both Adap-
tive Breadth Expansion and Depth Expansion modules contribute
significantly to the effectiveness of VIDEOTREE.

VIDEOTREE has better effectiveness and efficiency com-
pared to the existing method.

5.2.2. Ablation Study
In this section, we conduct ablating different parts of
VIDEOTREE on the EgoSchema subset. We ablate three
features: Number of captions, applying open-source LLM
and different VIDEOTREE components. We include more ex-
tensive ablations (including hyper-parameters and the design
of captioner/LLM/vision encoder) in Appendix Sec. 9.
Number of Captions. In Fig. 3, we compare VIDEOTREE
with existing methods under different caption settings.
Under similar average frame caption settings (7, 9, 11),
VIDEOTREE outperforms LLoVi [89] and VideoAgent [67]
by 6.5% and 2.0% on average accuracy across all three set-
tings. Moreover, unlike the non-hierarchical VideoAgent
baseline, which suffers from performance degradation after
11 frame captions (performing worse with 14 frame cap-
tions), our method continues improving, generalizing to 62.4
frame captions and achieving 6% boost at its peak. It high-
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Figure 3. Ablating the number of captions. Given approximately
the same number of frames, VIDEOTREE substantially outperforms
LLoVi and VideoAgent. Our hierarchical nature also allows it to
generalize better to more frames and perform better overall.

lights the importance of VIDEOTREE’s hierarchical nature.

Open-source LLM Reasoner. To validate the effective-
ness of VIDEOTREE with open-source LLM reasoners
(rather than GPT4), in Tab. 4, we report the performance
of VIDEOTREE using 7B and 12B versions of the Mistral
model [16, 17] as the LLM reasoner. We compare with
LLoVi [89] and LangRepo [19]. For a maximally fair com-
parison, we follow LangRepo’s evaluation pipeline, using a
log-likelihood classifier that scores all options and takes the
highest-scoring one. VIDEOTREE substantially outperforms
the baseline approaches on both 7B and 12B Mistral models
while only requiring 20% of the frame captions. Specifically,
compared to LangRepo, which uses complex textual sum-
marization modules, VIDEOTREE achieves 2.2% and 4.8%
better EgoSchema subset performance while using about
72.5% and 69.0% less inference time on Mistral 7B and 12B
LLM, respectively. These results confirm that VIDEOTREE’s
effectiveness and efficiency transfer to open-source models.

VIDEOTREE Components. In Tab. 5, we report the effec-
tiveness of the different components in VIDEOTREE. Specif-
ically, removing the depth expansion module brings a 1.8%
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#C C moves 
around

#C C puts the 
laundry basket on 
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#C C puts the 
chopping board in 
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#C C closes the 
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[Question]: What is the overall sequence of tasks c performs in the 
video, and how do they relate to each other?
Option A: C efficiently makes the bed, diligently does the laundry, 
and then goes for a refreshing walk.
Option B: C makes the bed, does the laundry, and watches tv.
Option C: In the morning, c makes the bed, adeptly does the laundry, 
and diligently goes to their work.
Option D: C diligently makes the bed, thoroughly does the laundry, 
and finally goes to rest in bed.
Option E: C makes the bed, does the laundry, and makes a cup of tea.

Scores

Figure 4. Qualitative examples of VIDEOTREE. Red options are answered wrongly with uniformly sampled 32 frames. Green options are
answered correctly with VIDEOTREE. Best viewed in color.

drop in performance, showing the importance of the hier-
archical design of VIDEOTREE. Removing the adaptive
breadth expansion brings another 3.2% decrease, verifying
the effectiveness of the adaptive nature of VIDEOTREE.

5.2.3. Qualitative Analysis

In Figure 4, we visualize qualitative results from
VIDEOTREE. Specifically, we show the keyframes and their
captions extracted by our adaptive tree representation given
a video query. This example is drawn from EgoSchema,
and shows the query format, which consists of a query and
multiple-choice answers. With the proposed VIDEOTREE
strategy, we split a complex multi-scene video (e.g. clean-
ing house across rooms) into several key scenes via visual
clustering and determine the most query-relevant scene via
the relevance score. We then obtain more fine-grained visual
cues by descending into each relevant cluster (Levels 2 and
3 in Figure 4). For example “C opens a washing machine”
is deemed highly relevant to the question, which asks about
the sequence of events. At the same time, frames like “C
moves around” are deemed irrelevant to the query and not
expanded. In the end, VIDEOTREE shows a dynamic ability
to select relevant segments and answer the given question
correctly with only 50% of the baseline’s 32 input captions.

The LLoVi (fixed uniformly sampling) fails to correctly an-
swer the question, sampling a large number of redundant
and irrelevant frames. We also provide additional qualitative
results in supplementary materials Sec. 12.

6. Conclusion

In this work, we proposed VIDEOTREE, an adaptive and hi-
erarchical framework for LLM reasoning over long-form
videos. VIDEOTREE adaptively extracts query-relevant
keyframes from the video input in a coarse-to-fine man-
ner and organizes them into a hierarchical representation,
enabling the LLM to effectively handle complex queries.
VIDEOTREE resulted in strong performance on three popular
datasets (EgoSchema, NExT-QA, and Video-MME), while
also improving efficiency by reducing the inference time and
LLM calls. In our qualitative analysis, we showed that given
a complex multi-scene video and its query, VIDEOTREE
is capable of extracting key scenes and zooming into more
detailed information that is highly related to the query. In
the future, as more advanced captioners and stronger LLMs
become available, the modular design of VIDEOTREE holds
the potential for even greater performance and adaptability.
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VIDEOTREE: Adaptive Tree-based Video Representation
for LLM Reasoning on Long Videos

Supplementary Material

In this supplementary materials, we present the fol-
lowing: limitations (Sec. 7), additional quantitative re-
sults (Sec. 8), additional ablation study for VIDEOTREE
framework (Sec. 9), the detailed algorithm for VIDEOTREE
(Sec. 10), additional implementation details (Sec. 11), addi-
tional qualitative analysis (Sec. 12).

7. Limitations
Like all LLM-based video-reasoning systems (including
dense sampling) our method is limited by the ability of
the captioner to accurately capture the contents of sampled
frames. However, our method’s modular nature means that
as captioners improve, we can easily include them into the
VIDEOTREE framework; similarly, we can use increasingly
strong LLMs as the reasoning backbone of VIDEOTREE.
While VIDEOTREE is training-free, it includes a small num-
ber of hyperparameters. In Sec. 9, we ablate these hy-
perparameters, showing that VIDEOTREE outperforms the
uniform-sampling baseline regardless of the choice of max
depth and branch width. Thus, while better hyperparame-
ters can benefit the method, even with sub-optimal settings
VIDEOTREE outperforms the uniform baseline.

8. Additional Quantitative Results
8.1. Comparison with advanced VideoLLMs on

EgoSchema and NExT-QA.
In Tab. 6, we compare VIDEOTREE with advanced Vide-
oLLMs [5, 23, 55, 62, 68, 70] on EgoSchema and NExT-
QA benchmarks. Without any video-specific training,
VIDEOTREE gets comparable performance on EgoSchema
fullset and slightly worse results on NExT-QA results, com-
parison with the methods was trained on large-scale video
data and massive GPU hours.

8.2. Additional evaluation benchmarks.
IntentQA Results. We report the IntentQA [24] results
of VIDEOTREE and compare with existing methods. We
first introduce IntentQA [24], which contains 4,303 videos
and 16K multiple-choice question-answer pairs focused on
reasoning about people’s intent in the video. We perform a
zero-shot evaluation on the test set containing 2K questions.
The videos are more than 44s in average length. We compare
our methods with both training-free [19, 20, 86, 89] and fine-
tuned baseline [65, 82].

As shown in Tab. 7, our training-free VIDEOTREE ap-
proach achieves 66.9% zero-shot accuracy on the test set,

surpassing the existing training-free approaches LLoVi [89]
with 2.7% improvements and even closing the gap with
finetuned method Vamos [65]. This result shows that
VIDEOTREE improves performance in answering questions
about intent, which is challenging since intent understand-
ing [24] requires the model to understand the various video
contexts, including the immediate communicative context,
the shared experience, and the commonsense.

Method ES NExT-QA

InternVideo 32.1 -
Tarsier-34B 61.7 79.2
VideoChat2 60.2 61.7
VideoLLaMA 2 63.9 -
LLaVA-OV-72B 62.0 -
LongVU 67.6 -

Training-free Methods
VIDEOTREE (ours) 61.1 75.6

Table 6. Comparison with advanced VideoLLMs on EgoSchema
and NExT-QA benchmarks.

Method Accuracy

Fine-tuned Method
VGT 51.3
Vamos 68.5

Training-free Methods
LangRepo 59.1
SeViLA 60.9
LLoVi 64.0
IG-VLM 64.2

VIDEOTREE (ours) 66.9

Table 7. IntentQA Results

Video-MME Short and Medium Split Results. In Tab. 8,
we test VIDEOTREE on the short and medium splits of Video-
MME benchmark as well. We apply the recent LLaVA-
OV-7B model [23] as the frame captioner. Specifically,
VIDEOTREE achieves 67.8% and 59.9% on Video-MME
short and medium split, a more than 5.7% and 6.7% im-
provement compared to LLoVi [89] and LongVA [91].



Model V-MME Short/Med MLVU-Avg
LLoVi 62.1/53.2 55.1
LongVA 61.4/50.9 56.3
VIDEOTREE 67.8/59.9 60.4

Table 8. Results on Video-MME (short and medium splits) and
MLVU with LlaVA-OV-7B as captioner.

Caption Number Avg LLM Calls ES Subset Acc

VideoAgent
6.4 10.2 58.4
8.4 10.2 60.2

11.0 9.0 57.4

VIDEOTREE (ours)
7.1 2.3 61.0
9.7 2.5 61.6

11.3 2.8 62.2

Table 9. The comparison of average LLM calls for VIDEOTREE

and VideoAgent [67] (estimated) under similar frame settings on
EgoSchema subset. Results show that VIDEOTREE achieves better
results on much less LLM calls.

MLVU Results. In Tab. 8, we test VIDEOTREE on the
MLVU validation set. We again use LLaVA-OV-7B [23] as
the frame captioner. Results show that VIDEOTREE achieves
a 5.3% and 4.1% gain over LLoVi [89] and LongVA [91],
respectively.

9. Additional Ablation Study
In this section, we report additional ablation studies for
VIDEOTREE framework. First, we ablate the LLM calls and
vision encoder size for our method. Then, we show the effect
of the different hyperparameter settings for VIDEOTREE. Fi-
nally, we analyze the effect of different VLM/LLM designs
for VIDEOTREE.

LLM Calls. In Tab. 9, we report the number of average
LLM calls of VIDEOTREE and compare with VideoAgent
[67].VIDEOTREE achieves better results on much less LLM
calls under similar caption numbers (only about 30% LLM
calls are needed). This is due to the adaptive and hierar-
chical structure of VIDEOTREE which could extracts more
keyframes faster instead of searching one frame a time. This
results highlight the advantage of the hierarchical nature of
VIDEOTREE in both efficiency and effectiveness, comparing
to the non-hierarchical approaches.

Visual Encoder. In Tab. 10, we study the effect of the
visual encoder used in the visual clustering operation. We
report the results of VIDEOTREE on three different scales

of visual encoder: OpenCLIP-B, OpenCLIP-G [14] and
EVA-CLIP-8B [57] and compare to VideoAgent [67] 2.
VIDEOTREE outperforms VideoAgent by an average of 6.9%
across both encoders. Comparing different visual encoders
ranging from 88M to 8B parameters, we see only a marginal
drop in performance for VIDEOTREE as the visual encoders
decrease in size, indicating that our approach generalizes
well to much smaller vision encoders (i.e. only a 0.2% drop
when going from 8B to 88M), making the model more effi-
cient while maintaining strong performance. Additionally,
we test the performance of a self-supervised vision encoder
for VIDEOTREE. Specifically, we apply DINOv2-base [48]
to VIDEOTREE and get 64.2% on EgoSchema subset, which
is 1.8% lower than the same size of CLIP model.

Visual Encoder Params Method Acc.

OpenCLIP-ViT-B 88M VideoAgent –
VIDEOTREE 66.0

OpenCLIP-ViT-G 1B VideoAgent 59.2
VIDEOTREE 66.2

EVA-CLIP-8B 8B VideoAgent 59.4
VIDEOTREE 66.2

Table 10. Testing different visual encoder design choices in
VIDEOTREE. We also compare with VideoAgent[67] to show
the effectiveness of our method.

Branch Width ES Acc↑ #Frame↓
2 64.4 43.5
3 65.0 54.6
4 66.2 62.4
5 64.2 72.5

Uniform Baseline 61.2 180

Table 11. The effect of different settings for branch width of
VIDEOTREE. When the branch width is set to 4, VIDEOTREE

achieves the best performance on the EgoSchema subset. Reducing
the branch width makes the model more efficient while retaining
performance, outperforming all existing approaches.

Hyperparameter Analysis. In Tab. 11, we study the effect
of the branch width of the tree-based representation for the
VIDEOTREE. The best performance is obtained when the
branch width is set to 4. As with depth, excessive branch
width reduces the VIDEOTREE performance due to the infor-
mation overwhelming to the LLM; however, even with the

2Note that VideoAgent only report results on OpenCLIP-ViT-G (1B)
and EVA-CLIP-8B.



worst branch width setting, VIDEOTREE still outperforms
the baseline.

In Tab. 12, we study the effect of the max breadth of
the adaptive tree-based representation. The results indicate
that even with a smaller max tree breadth, VIDEOTREE
achieves good performance while using much fewer frames.
Increasing the breadth generally increases performance, with
the best performance when the max breadth is set to 32.
However, having an excessive max breadth leads to worse
results, suggesting that incorporating too much information
in the adaptive tree-based representation limits the LLM
reasoning ability. This links back to the intuition of having
an efficient representation for the LLM reasoning over long
videos.

In Tab. 13, we study the effect of the threshold on the
number of highly relevant clusters, which controls the it-
erative process of the adaptive breadth expansion process.
The best performance is obtained when the branch threshold
is set to 4. Reducing the threshold improves the efficiency
while retaining strong performance compared to the baseline
results.

Max Breadth ES Acc #Frame

8 63.0 26.9
16 64.0 49.0
32 66.2 62.4
64 63.2 94.6

Uniform Baseline 61.2 180

Table 12. The effect of different settings for the max breadth of the
first level of the tree. Results show that when the max breadth is
set to 32, VIDEOTREE obtains the best performance. Reducing the
max breadth improves efficiency while retaining performance.

Threshold ES Acc #Frame

2 63.6 13.9
3 64.4 32.2
4 66.2 62.4
5 64.8 79.2

Uniform Baseline 61.2 180

Table 13. The effect of different settings for the threshold on the
number of highly relevant clusters. Results show that when the
threshold is set to 4, VIDEOTREE obtains the best performance.
Reducing the threshold improves efficiency while retaining perfor-
mance.

VLM Captioner. In Tab. 14, we compares the perfor-
mance of the best captioner (LaViLA for EgoSchema and
CogAgent for NExT-QA) with using a LLaVA-1.6-7B [36]

Captioner EgoSchema Sub NExT-QA

LLaVA-1.6-7B 59.2 73.6
Best Model 66.2 75.6

Table 14. Comparing accuracy with VIDEOTREE using the same
captioner throughout (LLaVA1.6-7B) and best captioner for each
benchmarks.

captioner everywhere. We observe a comparable perfor-
mance on NExT-QA compared with the best captioner, while
still outperforming all other existing methods in Sec. 5.1.
We also observe a drop in performance on the EgoSchema
subset while using LLaVA-1.6 captioner, this is likely due
to a lack of egocentric data during LLaVA training, which
is needed for strong performance on EgoSchema. In the
future, we would like to see strong unified captioner that
operate well across datasets; these would fit seamlessly
into the VIDEOTREE framework, further boosting the per-
formance. Additionally, we test the performance of the
question-prompted captioner by adding the video query into
the prompt of the LLaVA-1.6 captioner. The results show
that on EgoSchema subset, VIDEOTREE with a question-
prompted captioner achieves 63.2% accuracy, 3.0% lower
than the direct captioner.

LLM Reasoner. We ablate the design choice of captioner
and LLM for the VIDEOTREE framework in Tab. 15. With
a better LLM, VIDEOTREE can achieve better performance
on long video understanding tasks, indicating the poten-
tial VIDEOTREE to improve as its modules become more
advanced. Notably, our GPT-3.5 variant substantially out-
performs existing methods with the same LLM and standard
QA prompts (VideoAgent [67] 48.8%, LLoVi [89] 51.8%),
achieving 57.6% accuracy on EgoSchema subset.

Tree structure. We first note that our ablation (Tab. 5,
1.8% improvements) highlights the importance of the tree
structure to keyframe selection. To test its utility as a rep-
resentation for the reasoner LLM, we conducted additional
ablations, giving the reasoner a version of the tree’s caption
linearized in a top-down left-right traversal. On EgoSchema
subset, this new version scores 64.8% while the temporal
ordering one scores 66.2%; thus, while the tree is key to
keyframe selection, the reasoner benefits from temporal or-
der in video tasks.

10. Detailed Algorithm

In Algorithm 1, we present the algorithm behind
VIDEOTREE.



Algorithm 1 VIDEOTREE

Require: Video frames V , query Q, number of clusters k, threshold for the number of high-relevance cluster
rele_num_thresh, maximum number of clusters allowed max_breadth, branch width w, visual encoder E, LLM
Fllm, captioner Fvlm, cluster information C, relevance score R, tree-based video representation Tree

1: k ← k_init
2: while k ≤ max_breadth do ▷ Adaptive breadth expansion
3: C ← VisualClustering(E, V, k)
4: Cap← ClusterCaptioning(Fvlm, V, C)
5: R← RelevanceScoring(Fllm, C,Q,Cap)
6: if count(r ∈ R | r = high) ≥ rele_num_thresh then
7: Tree← Tree.append(C) ▷ First level of VIDEOTREE
8: break
9: end if

10: k ← k ∗ 2
11: end while
12: for Ci ∈ C do ▷ Relevance-guided depth expansion
13: Ĉi ← DepthExpansion(E,Ci, Ri, w)
14: Tree← Tree.append(Ĉi) ▷ Adding hierarchy of VIDEOTREE
15: end for
16: Cap← GetCaptions(Fvlm, V, T ree) ▷ LLM Reasoning
17: pred_answer ← LLMReasoning(Fllm, Cap,Q)
18: return pred_answer

Method LLM ES Acc

LLoVi GPT-3.5 51.2
VideoAgent GPT-3.5 48.8
VIDEOTREE (Ours) GPT-3.5 57.6

LLoVi GPT-4 61.2
VideoAgent GPT-4 60.2
VIDEOTREE (Ours) GPT-4 66.2

Table 15. The effect of different design choices of the LLM Rea-
soner for VIDEOTREE.

11. Additional Implementation Details

Additional VIDEOTREE Implementation Details. For
clustering, we use the kmeans_pytorch library. The
hyper-parameter setting for max_breadth, max_depth,
branch_width and rele_num_thresh on the EgoSchema
and Video-MME benchmark is 32, 3, 4 and 4 and for NExT-
QA, we set the hyper-parameter as 8, 3, 2, and 3. The initial
k depends on the average video length, and is set to 4 for
NExT-QA and 8 for EgoSchema and VideoMME.

Lifelong Memory Reproduce Details. In Sec. 5.1, we
report the main results of LifelongMemory [72] which is
lower than the number than they reported in their paper.
Here, we introduce our reproduce process in detail. For
captions, since LifelongMemory authors do not provide the
exact caption data/path, we directly utilize the same cap-

tioner from VIDEOTREE method and all other existing works
(LaViLA) and extract the captions by 0.5FPS according to
LifelongMemory paper. We then use their code to run the
experiments on EgoSchema, however, the results are low
and we observed a low success rate of the QA process (only
about 80% success samples). We then update their output
format/process code, which boost performance by about 10%
and get the results in Sec. 5.1, but still lower than their paper
results. Thus, for fair comparison, we directly reported the
reproduced results.

Prompt Details. We provide detailed prompts for the
relevance scoring prompt in Tab. 16 and LLM reasoning
prompt in Tab. 17 on the EgoSchema benchmark.

Experiments Compute Resources. All experiments are
conducted on 4 (or less) NVIDIA-A6000 GPU and Azure
Cloud APIs (for OpenAI models). The minimal GPU mem-
ory requirement is 24GB.

12. Additional Qualitative Analysis

Additional Visualization. In Fig. 5 we show another visu-
alization from VIDEOTREE. Here, VIDEOTREE localizes
a single key activity (embroidering a cloth) taking place in
the video and dynamically expands its constituent frames
to answer the question correctly using a minimal number
of frames. As shown in Figs. 4 and 5, the chosen keyframe
distribution depends on the query: general queries yield
sparser keyframes that extend to distant parts of the video.
Queries with detailed actions/objects yield more concen-
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#C C crochets 
the garment

#C C Adjusts a 
piece of knitted 
fabric on a lap

#C C folds the 
fabric

#C C picks up 
the scissors 
from the table

#C C picks a 
needle from the 
fabric

1 1 1 1 1 31

#C C removes 
the crochet hook 
from the fabric

#C C aligns the 
fabric

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C picks the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C stretches 
the crochet fabric

[Question]: What was the primary activity taking place in the 
video, and how did it lead to secondary activities related to it?

A: Currently, c is skillfully knitting a beautiful cloth by hand.
B: Currently, person c is diligently sewing a piece of cloth.
C: C is embroidering a cloth.
D: C is crocheting a cloth.
E: Currently, c is skillfully weaving a beautiful cloth fabric.

Scores

Figure 5. Qualitative examples of VIDEOTREE keyframes and captions selection. Red options are answered wrongly with uniformly sampled
frames. Green options are answered correctly by VIDEOTREE. Best viewed in color.

trated keyframes.
Failure Case. We provide the qualitative visualization

of a failure case in Fig. 6. Here, we find that the failure
was due to the following factors: A) The video had little
scene change and multiple similar repeated actions (washing
dishes). B) As a result, when VIDEOTREE expands down
to more fine-grained details, the captioners give detailed
description that contain some hallucinations. These captions
miss the correct higher-level keyword (dish) in the selected
captions. With stronger captioners, this failure case could
potentially be resolved.

Human study. We conduct a human study on the accu-
racy of the keyframe scoring module to measure the qual-
ity of the LLM-based keyframe selection. Specifically, we
ask a human annotator to judge the relevance of all 1st-
level keyframes to the query, and we compare these deci-
sions to the GPT4-based score used to evaluate this feature
in VIDEOTREE. On 345 keyframes from 20 EgoSchema
videos, results show that the GPT4-based keyframe scor-
ing achieves 90.7% agreement with our human annotator,
suggesting it captures human preferences well.



Table 16. VIDEOTREE with relevance scoring prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of about caption_number frame
captions sparsely sampled from the video (#C means the first person view, and #O indicates another). The ultimate
goal is to answer a question related to this video, choosing the correct option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy of your response. After
selecting your answer, rate your confidence level in this choice on a scale from 1 to 100, where 1 indicates low
confidence and 100 signifies high confidence. Please provide a concise one-sentence explanation for your chosen
answer. If you are uncertain about the correct option, select the one that seems closest to being correct. Meanwhile,
could you provide a relevance score for each frame caption to evaluate their relevance with the query-answering
process. The score is between 1,2,3, where 1 indicates low relevance and 3 signifies high relevance. Please return the
relevance score in the format of a list of caption_number scores.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, confidence and frame relevance are (please response in the format of ’prediction:,
explanation:, confidence:, frame relevance:’)

Assistant
prediction, explanation, confidence, frame relevance



Table 17. VIDEOTREE with LLM reasoning prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of frame captions sparsely sampled
from the video (#C means the first person view, and #O indicates another). The ultimate goal is to answer a question
related to this video, choosing the correct option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy of your response. After
selecting your answer, rate your confidence level in this choice on a scale from 1 to 100, where 1 indicates low
confidence and 100 signifies high confidence. Please provide a concise one-sentence explanation for your chosen
answer. If you are uncertain about the correct option, select the one that seems closest to being correct.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, and confidence is (please response in the format of ’prediction:, explanation: ,confi-
dence:’)

Assistant
prediction, explanation, confidence

[Question]: Taking into account all the actions performed by c, 
what can you deduce about the primary objective and focus 
within the video content?
Option A: C is cooking. 
Option B: C is doing laundry.
Option C: C is cleaning the kitchen.🌲
Option D: C is cleaning dishes.
Option E: C is cleaning the bathroom.

Scores 2 1 111 2 13

#C C  washes 
food

#C C picks up a 
sponge

#C C cleans the 
tray with the 
sponge

#C C cleans the 
chopping board 
with the sponge

#C C moves the 
sponge on the sink

#C C picks the 
cloth

#C C moves the 
sponge on the sink

#C C washes the 
glass

#C C  washes 
food

#C C picks the 
dish lid

#C C picks up a 
sponge

#C C puts the sink 
down

#C C moves the 
sponge on the 
sink

#C C moves the 
sponge on the sink

#C C washes the 
plate

#C C scrubs the 
plate with the sponge

#C C cleans the 
small bowl.

#C C washes the 
hand

Figure 6. Failure case of VIDEOTREE.
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