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Abstract

With the advent of large language models (LLMs) en-
hanced by the chain-of-thought (CoT) methodology, visual
reasoning problem is usually decomposed into manageable
sub-tasks and tackled sequentially with various external
tools. However, such a paradigm faces the challenge of the
potential “determining hallucinations” in decision-making
due to insufficient visual information and the limitation of
low-level perception tools that fail to provide abstract sum-
maries necessary for comprehensive reasoning. We ar-
gue that converging visual context acquisition and logi-
cal reasoning is pivotal for tackling visual reasoning tasks.
This paper delves into the realm of multimodal CoT to
solve intricate visual reasoning tasks with multimodal large
language models (MLLMs) and their cognitive capability.
To this end, we propose an innovative multimodal CoT
framework, termed Cantor, characterized by a perception-
decision architecture. Cantor first acts as a decision gener-
ator and integrates visual inputs to analyze the image and
problem, ensuring a closer alignment with the actual con-
text. Furthermore, Cantor leverages the advanced cogni-
tive functions of MLLMs to perform as multifaceted experts
for deriving higher-level information, enhancing the CoT
generation process. Our extensive experiments demonstrate
the efficacy of the proposed framework, showing signifi-
cant improvements in multimodal CoT performance across
two complex visual reasoning datasets, without necessitat-
ing fine-tuning or ground-truth rationales. Project Page:
https://ggg0919.github.io/cantor/.

1. Introducion
With the development of large language models (LLMs),
researchers have begun to adopt the chain-of-thought (CoT)
strategy to improve the model performance in reason tasks.

*Equal contribution.
†Corresponding author.

Cantor       (with caption)

What is the highest amount this class measures?

Question: Which solution has more particles?  
ObjectQuant Locator (MLLM): The number of 
green particles in both solutions is the same.

Which solution has a higher 
concentration of green particles?

Question: Green particles in Solution A.
Detector: (0.2, 0.3), (0.4, 0.5)

Question: Green particles in Solution B.
Detector: (0.2, 0.3), (0.4, 0.5), (0.6, 0.7), (0.1, 0.2)

(a) Determining Hallucinations 

(b) Perception or Cognition Low-level Specialized Perception Tool

High-level General Cognitive Expert 

Question

Visual
Context

HallucinationsLLM

Cantor

LLM: Could you provide more details about 
'this class' and the measurements? Is it about 
math, physics, programming, or something else?

Cantor (MLLM): The beaker's max volume, 
marked at the top scale, requires identification by 
the VisionIQ Analyst.

Caption: It shows a glass beaker filled with red 
liquid. It's labeled with capacity, glass type ......
Cantor (LLM): The aim is to find the beaker's 
max volume in the image, requiring VisionIQ 
Analyst to spot the beaker's max volume mark.

Cantor       (with image)

GPT-3.5 (wihout visual context)

Reality

Figure 1. (a) Comparison of visual information on decision gen-
eration: Asking GPT-3.5 (without visual context) leads to “deter-
mining hallucinations” due to lacking clarity of the image. Can-
tor (with caption) by introducing visual context through captions,
does not encounter this issue. Cantor (with image) is even more
precise, improving the rationality of task assignment. (b) Com-
parison of different visual tools: Low-level specialized perception
tools used in traditional approaches only obtain basic data. High-
level general cognitive expert acted by MLLM obtains object num-
ber relationships, enabling direct and subsequent reasoning.

CoT mimics the gradual reasoning process of humans, help-
ing models improve their deep understanding and analytical
abilities by constructing a series of logical steps to solve
complex visual reasoning problems. The effectiveness of
CoT has been widely validated in language reasoning tasks.
Recently, researchers have naturally extended its applica-
tion to multimodal domains. Visual reasoning tasks [29, 30]
are inherently suited for chain-of-thought (CoT) method-
ologies. These tasks necessitate that models not only “per-
ceive” the contents and contexts within images but also
“comprehend” these visual elements to make coherent in-
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ferences and decisions. Consequently, the exploration of
multimodal CoT has significantly expanded in the research
community.

Most existing multimodal CoT methods are divided into
two stages: decision-generation and execution. 1)Decision-
Generation. It is the first step in multimodal CoT meth-
ods, which involves understanding, analyzing, and formu-
lating inference plans for the problem. The existing deter-
mining methods include breaking down problems into sub-
problems [53], capturing scene maps in images [32], find-
ing similarities and differences in related images [49], and
so on [41, 44]. They attempt to simplify the problem at
the textual level or add more contextual information at the
visual level. 2) Execution. In this stage, models perform
specific operations scheduled by the previous determining
stage. Specifically, the model transforms the planning into
practical solutions. The existing execution methods usually
rely on various specialized API tools or vision-language
models (VLMs), with the former emphasizing the speci-
ficity of task execution [31, 41] and the latter emphasizing
the universality of task execution [44, 53].

Although these multimodal CoT methods have improved
the performance in visual reasoning tasks, there are still lim-
itations: Firstly, when making decisions, existing methods
often directly input plain text into LLMs without consider-
ing visual context [17, 44, 53]. Intuitively, this increases the
divergent thinking of LLMs towards problems, but in real-
ity, it may lead to “determining hallucinations”. As shown
in Fig. 1 (a), if the question itself is not closely related to
the image and only asks “What is the highest amount this
class measures?” based on the text, LLM (GPT-3.5) is not
clear about what “this class” specifically means. It will an-
swer that the provided information is insufficient and begin
to guess whether the “class” refers to a metric in physics or
a class in programming. This perception uncertainty may
lead LLMs to make decisions that are unrelated to the prob-
lem or even incorrect, misleading subsequent execution and
resulting in completely unrelated answers.

Secondly, during execution, existing methods typi-
cally execute tasks by calling external tools, because
MLLMs still fall short of solving numerous visual rea-
soning tasks [17, 31, 32, 38, 44]. But these tools are
mostly low-level visual-perception tools (detectors, recog-
nizer, OCR, etc.) that can only extract low-level visual in-
formation. As shown in Fig. 1 (b), when comparing the
number of particles in solutions, they only provide the po-
sitions of particles and fail to infer high-level information
such as the relationship between their numbers. They fur-
ther input these low-level clues into LLMs for organization
and summarization [17, 32, 53]. When complex clues in-
crease, this undoubtedly increases the burden of LLMs on
long-text reasoning. Meanwhile, with many external tools,
it also increases the complexity of the pipeline.

To address the above limitations, we propose a novel
multimodal CoT framework, Cantor. In decision genera-
tion, we enable an MLLM or an LLM to act as a can-
tor within the chorus, simultaneously processing visual
and textual context for comprehensive understanding, and
then assigning specific tasks to “experts” acted by a sin-
gle MLLM for high-level logical problem-solving. Specif-
ically, during the decision generation, we analyze in de-
tail the importance of visual information in the determining
stage. This includes the quality of determining with or with-
out visual information, as well as the differences in the im-
pact of detailed or concise visual information on determin-
ing. Ultimately, we conclude that visual information is cru-
cial during the decision generation stage. When we use an
MLLM model (such as Gemini) for the decision generator,
we directly feed images into the model to fully comprehend
the question and deliberate on it. However, when employ-
ing an LLM model (such as GPT-3.5), we find that provid-
ing a more detailed caption of the image is more conducive
to understanding the question. Furthermore, the decision
generator is required to explicitly provide explanatory deci-
sions, including problem-solving strategies, reasons for ex-
pert invocation, and specific task conduction for each ex-
pert. Consequently, it guides an MLLM to act as tailored
experts (such as ObjectQuant Locator, TextIntel Extractor,
VisionIQ Analyst, and ChartSense Expert) to provide con-
clusive answers for sub-tasks in the process. As shown in
Fig. 1 (a), when using LLM to make a decision, with de-
tailed caption guidance, the model knows that it is asking
for the maximum volume of the beaker and makes the cor-
rect decision. The decision is clearer when the image is
available to the MLLM, that is, requiring the VisionIQ An-
alyst to extract the number at the top of the cup wall. Dur-
ing execution, we observe that MLLM is an advanced cog-
nitive tool that performs better in directly acquiring high-
level information (e.g., relative position and quantity) than
acquiring low-level visual information like detecting posi-
tions. Such high-level information is superior for multi-
modal CoT. Instead of using several external tools, Can-
tor assigns different tasks to a single MLLM via different
expert identities and task instructions, exploring the profes-
sional potential of an MLLM acting as certain experts. The
tailored experts provide high-level professional information
directly, thus reducing the burden of subsequent integrated
reasoning. As shown in Fig. 1 (b), when comparing the
concentration of green particles, we need to compare the
number of particles in the two bottles first. MLLM acts as
an ObjectQuant Locator and directly compares the quantity
variance in the two solutions. Compared with obtaining the
position of particles, MLLM gets the result of the quantity
relationship more accurately. This result is directly applied
to the further inference of the final answer.

Our proposed framework Cantor achieves SOTA results



in both ScinceQA [29] and Mathvista [30]. When Gem-
ini is used as the decision generator, Cantor obtains an ac-
curacy gain of 4.11% and 5.9%, respectively. Employ-
ing GPT-3.5 in Cantor also achieves an accuracy gain of
2.24% and 9.2%. In all of our experiments, we use only
one MLLM (Gemini) to play the role of multiple experts,
performing different sub-tasks with different requirements.
Our contributions are the following:
• We propose an inspiring multimodal CoT framework

named Cantor, which features a perceptual decision archi-
tecture that effectively integrates visual context and logi-
cal reasoning to solve visual reasoning tasks.

• We utilize the advanced cognitive abilities of an MLLM
to act as multifaceted experts, obtaining higher-level in-
formation and significantly enhancing CoT generation.

• We demonstrate Cantor’s effectiveness on two challeng-
ing benchmarks, largely surpassing existing counterparts.

2. Related Work

2.1. Multimodal Large Language Models

Recent researches indicate that the development of Multi-
modal Large Language Models (MLLMs) [6, 10, 11, 33,
37, 39, 47, 48] is the result of combining the advanced rea-
soning capabilities of Large Language Models (LLMs) with
the capabilities of Vision-Language models (VLMs). These
models have achieved significant performance improve-
ments in multimodal tasks by integrating visual and linguis-
tic information. In particular, significant progress [13, 23,
36]has been made in connecting visual and text representa-
tions with contrastive visual and language models, but they
encounter limitations when dealing with downstream tasks
that require generating components or performing more re-
fined reasoning on visual and language. To overcome these
limitations, MLLM extends the reasoning and generation
capabilities of LLM to the visual domain by directly infer-
ring embedded visual features [1, 2, 7, 9, 24, 54]. In ad-
dition, MLLMs further improve performance through fine-
tuning visual instructions [28].

These advances not only demonstrate the ability of
MLLM to handle complex multimodal information but also
provide new possibilities for achieving General Artificial
Intelligence (AGI) with rich multimodal information. By
integrating the text reasoning ability of LLM with the image
understanding ability of visual language models, MLLM
can achieve deep understanding and expression in multi-
ple modalities, processing complex tasks such as image
captioning and visual question answering. Open-source
MLLMs such as LLaVA [28] demonstrate these capabili-
ties, while closed-source models such as GPT4-V [34] and
Gemini [40] have taken a greater step in capturing scene
context, reasoning, and creativity. Although for specific
tasks these closed-source models may not be directly com-

petent or fine-tuning. However, prompt learning can to
some extent overcome these limitations. This paper is ded-
icated to exploring the technique of CoT [43] to enhance
the ability of MLLMs to capture the complete context of
complex visual scenes, thereby further strengthening their
reasoning capabilities.

2.2. Tool-Augmented Language Models

In recent years, despite the impressive performance of
Large Language Models (LLMs), they are not without their
inherent limitations. These include challenges such as ob-
taining up-to-date information [21], the inability to employ
specific tools [31, 38], and difficulties in executing com-
plex reasoning processes [29, 30]. Meanwhile, researchers
are increasingly interested in using external tools and mod-
ular methods to enhance LLM through prompting and in-
context learning. These enhanced LLMs can utilize differ-
ent external tools to provide LLMs with more functional-
ity and gain more knowledge. Some works [5, 12, 17, 19]
utilized prompts to generate complex programs that can be
executed by computers, calling different tools to more ef-
fectively perform logical reasoning tasks. For example,
PaLI-X-VPD [17] extracted the reasoning ability of LLM
by generating multiple candidate programs, executing pro-
grams through external tools, and verifying their correct-
ness. It transformed each correct program into a language
description of reasoning steps to form a CoT. In addition,
some works proposed benchmarks (such as API Bank [25],
ToolQA [55], and MetaTool [18]) to evaluate the effective-
ness of LLM tool use. This article mainly emphasizes en-
hancing the tool usage ability of MLLM.

2.3. Multi-modal CoT Reasoning

LLMs and MLLMs are becoming increasingly popular. Al-
though their own abilities are becoming stronger, good
prompt methods are still the key to fully unleashing their
abilities. Chain-of-thought (CoT) is a method to improve
LLM’s reasoning ability, and the core of CoT is to encour-
age LLM to clarify their reasoning in a human thinking
way, specifically by adding logical thinking processes be-
fore obtaining answers. In the field of NLP, CoT has re-
ceived extensive research [8, 15, 42, 51]. Jason Wei et
al. [43] significantly improved LLM’s reasoning ability by
simply adding problem-solving ideas directly to in-context
examples. Subsequently, researchers mainly focused on
how to automate the construction of CoT to reduce manual
annotation and more complex structures such as Tree-of-
Thought (ToT) [45] and Graph-of-Thought (GoT) [3, 22,
46].

Meanwhile, surprising progress has been made in mul-
timodal CoT. MM-CoT [52] firstly proposed a two-stage
reasoning framework by using text and image pairs as in-
put, generating rationale first and then generating answers.



Compare the average kinetic energies of the 
particles in each sample. Which sample has 
the higher temperature?
(A) Sample A          (B) Sample B
(C) neither; their concentrations are the same    

Rationale:
The temperature of particles in a substance is directly 
proportional to its average kinetic energy. The 
formula for kinetic energy of an particle is 1/2mv^2.

Decision Generator

Detector

A: Mass: 44 u  Speed: 1,400 m/s
B: Mass: 46 u  Speed: 1,400 m/s

Their numbers are the same.

Answer Generator

Rationale:
With equal speeds in two samples, the one with 
heavier particles, sample B, has more kinetic energy 
and thus a higher temperature.

TextIntel Extractor: Extract the mass 
and speed of each particle in sample A 
and sample B.

Rationale:
If two samples have same speed, the heavier one, 
sample B, will have more kinetic energy and be hotter.
Answer: Sample B

1. TextIntel Extractor is 
required to extract mass m and 
speed v.
2. ObjectQuant Locator is  
needed to compare the number 
of particles in two samples.

Expert Modules

Module Selection & Reason

Principle Analysis

Task Allocation

ObjectQuant 
Locator

TextIntel 
Extractor

ObjectQuant Locator:  Which sample 
has more particles? 

Execution-
Modularization

TextIntel 
Extractor

ObjectQuant
Locator

VisionIQ
Analyst

ChartSense
Expert

VisionIQ
Analyst

Execution-Synthesis

Decision-
Generation

Mass of each particle: 44u
Average particle speed: 1,400m/s

Mass of each particle: 46u
Average particle speed: 1,400m/s

Sample A Sample B Pin Pout

S, E

Figure 2. Overview of Cantor and a specific example. Cantor analyzes the image and problem through the Decision Generator, offering
the principle analysis of the questions, and providing module selection & Reason, as well as specific task allocation. Subsequently, MLLM
acts as various expert modules to execute sub-tasks. Finally, Cantor synthesizes and contemplates through the Answer Generator, providing
the final answer.

Subsequent works [14, 14, 41, 53] are mostly based on this
framework, focusing on designing special vision-language
feature fusion mechanisms to enhance multimodal infor-
mation interaction. However, these CoT prompting meth-
ods need to fine-tune on ground truth of natural language
reasoning, which requires both annotation and computation
costly. Based on this issue, researchers have proposed other
CoT methods that do not require manual annotation and
training. On the one hand, they fully tap into textual in-
formation. For example, DD-CoT [53] further refined the
process of generating the CoT. Without introducing visual
information, it used LLM to break down the problem into
multiple related sub-questions and then answer each sub-
question one by one to form the CoT. On the other hand,
researchers are committed to enhancing visual information
through various means. For example, CoCoT [49] captured
image characteristics by comparing the similarities and dif-
ferences between images, while CCoT [32] obtained scene
maps by disassembling the targets and attributes in the im-
ages to assist in rationale generation. The key difference
between our method and these methods is that when min-
ing text information, we introduce visual information in ad-
vance to make decisions more reasonable and factual. In
addition, we enhance visual information more comprehen-
sively by calling multiple experts. Last, Cantor is also a
method that does not require training or manual annota-
tion, so it has strong universality and convenience. This
paper emphasizes enhancing the expert usage capability of
MLLM. Considering that MLLM has multimodal universal
capabilities, it is naturally suitable to serve as various ex-

perts. Therefore, this paper will endow MLLM with various
identities and explore its expert-playing abilities.

3. Method

To address the limitations of multimodal CoT in solving vi-
sual reasoning tasks, we propose Cantor, which introduces
visual information to make correct decisions and uses a sin-
gle MLLM to act as multiple experts to adapt to a wide
range of problems. We describe the framework of Can-
tor (Section 3.1). Then, we provide a detailed introduction
to our two-step approach: the first is Decision-Generation
(Section 3.2), and the second is Execution (Section 3.3).

3.1. Preliminaries

Cantor consists of two stages: Decision-Generation and
Execution, as shown in Fig. 2. During the Decision-
Generation stage in Cantor, Cantor’s input consists of X =
{I, T, Pin}, where I denotes the visual input (image or a
caption), T signifies the text input, which represents the
concatenation of the problem statement and its context, and
Pin represents the prompt for generating decisions. For-
mally, given an input query X , a decision P is generated as
follows: Pout = F (X), where F denotes the decision gen-
erator (an LLM or MLLM). Specially, Pout = {R,O, St},
where R denotes Principle Analysis, O denotes Module Se-
lection & Reason, and St denotes the tasks assigned to ex-
pert modules. For specific examples, please refer to the blue
section in the middle of Fig. 2.

In the execution-modularization stage, multiple sub-



tasks St = {st1, st2...stn} derived from the decision Pout

and image I are jointly sent to the corresponding expert
module to obtain the sub-answers Sa = {sa1, sa2, ..., san}.
The process is as follows: Sa = G(St, I), where G denotes
various experts (an MLLM). This process corresponds to
the Execution-Modularization stage in the purple section at
the bottom right of Fig. 2. Then in Execution-Synthesis
stage, we concatenate the sub-tasks and sub-answers to
form supplementary information S = {St, Sa}, and de-
sign an answer generation prompt E. Finally, feed the up-
dated input X ′ = {I, T, S,E} and infer the final answer
A = F (X ′), where F denotes the answer generator (an
LLM or MLLM), as shown in the upper right corner of
Fig. 2.

3.2. Step 1: Decision-Generation

Our first step is to generate decision Pout which considers
and deploys the problem. Please note that we are studying
unsupervised visual reasoning tasks, which involve having
the model generate corresponding decisions for the prob-
lem without ground truth [44, 49]. Additionally, for stan-
dardization and accuracy, we adopt a few-shot setting in
prompt to provide a decision generation prompt Pin for the
model, which includes the requirements for decision gen-
eration, the characteristics of callable modules, and several
manually written decision examples.

Let’s provide a detailed introduction to the Decision-
Generation process of Cantor and the specific components
of the prompt Pin:

1. Acting as Decision Generator. We prompt the LLM
or MLLM with “You are an advanced question-answering
agent required with four specialized modules to aid in the
analysis and responding to queries about images” enabling
it to function as a decision generator in Cantor.

2. Expert Modules Unveiled. As shown in the Expert
Modules of Fig. 2. We provide detailed information on the
characteristics of each expert module for Cantor, with the
aim to allocate tasks to each expert module based on the
principle of addressing the problem during the Decision-
Generation phase, as follows: TextIntel Extract: This
module extracts and converts text within images into ed-
itable text format. It’s particularly useful for images con-
taining a mix of text and graphic elements. ObjectQuant
Locator: This module identifies and locates objects within
an image. It’s advanced at comparing quantities and recog-
nizing spatial relationships. VisionIQ Analyst: This mod-
ule processes and interprets visual data, enabling you to ask
any queries related to the image’s content. ChartSense
Expert: This module specializes in analyzing and inter-
preting information from charts and graphs. It can extract
data points, understand trends, and identify key components
such as titles, axes, labels, and legends within a chart.

3. Principle Analysis and Module Selection & Rea-

son. We prompt Cantor “Provide a rationale for your ap-
proach to answering the question, explaining how you will
use the information from the image and the modules to
form a comprehensive answer”, performing an overall as-
sessment and modular analysis of the question.

4. Task Allocation. We prompt “Assign specific tasks to
each module as needed, based on their capabilities, to gather
additional information essential for answering the question
accurately.”, requiring Cantor to select the necessary mod-
ules and assign their corresponding specific tasks.

5. Contextual Insights and Practical Applications.
We introduce some in-context examples to enhance Can-
tor’s comprehension of our prompts, ensuring its responses
adhere to the desired format. Detailed instances are pro-
vided in the supplementary materials for further reference.
Then, we input the particular problem that needs address-
ing, along with its contextual details, enabling Cantor to
formulate nuanced decisions. The blue part on the left half
of Fig. 2 shows a specific example of decision generation.

The above five parts are combined to form the final de-
cision generation prompt Pin. Subsequently, Pin together
with visual input I and text input T , constitutes the com-
plete input for the first stage of Cantor, prompting Cantor to
deliver a deliberate decision Pout.

The decision generation method represents a core novel
contribution of our work. Initially, the LLM or MLLM
is employed as a decision generator, serving as the brain.
Next, a suite of specialized expert modules is integrated,
augmenting the decision generating with diverse capabili-
ties analogous to the limbs. This integration ensures that
decision-generating is both comprehensive and granular,
leveraging the strengths of each module. Thereafter, the
decision generator tailors tasks for selected expert modules
based on insights gained from principle analyses. This dy-
namic task allocation enhances Cantor’s efficiency and ef-
fectiveness. Ultimately, the introduction of in-context ex-
amples enables the MLLM to learn and reference, thereby
further improving the accuracy and adaptability of decision
generation. Notably, we introduce visual context in advance
during the Decision-Generation stage, rather than the Exe-
cution stage, effectively alleviating determining hallucina-
tions.

3.3. Step 2: Execution

In Cantor, the execution stage can be divided into two
stages, Execute-Modularization and Execute-Synthesis.
The former completes the sub-tasks assigned during the
Decision- Generation stage by calling various expert mod-
ules and providing supplementary information. The latter
summarizes various supplementary information from the
execute-modularization stage and generates the final answer
through rational and detailed thinking.

Execute-Modularization. We call the expert mod-



ule to execute the various sub-tasks assigned during the
Decision-Generation stage. Specially, we first extract sub-
tasks St = {st1, st2...stn} from Pout. Next, we find the ex-
pert module corresponding to the sub-task sti in sequence,
and input the sub-task sti as the prompt into the expert, such
as “ObjectQuant Locator: Which sample has more parti-
cles?”. Subsequently, we obtain the sub-task answer sai,
such as ”Their numbers are the same”, as shown in the lower
right part of Fig. 2.

Symbolically, we input the experts played by MLLM,
sub-task sti, and image I , and MLLM provides the exe-
cution results of the sub-task. The process is as follows:
sai = G(I, sti), where G(·) represents MLLM acting as
experts, and sai represents the sub-task’s answer. When
executing sub-tasks, we only use one MLLM to act as dif-
ferent expert modules. This not only simplifies the pipeline
of the method but also aims to fully utilize the advanced
cognitive abilities of MLLM.

Execute-Synthesis. We concatenate and summarize the
obtained sub-tasks and sub-tasks answers to obtain supple-
mentary information S for auxiliary reasoning, as follows:
S = {[st1, sa1] · [st2, sa2] · ... · [stn, san]}. Notably, in the
answer generation stage, we introduce the answer genera-
tion prompt E, which includes the prompt and the format-
ting requirement for generating answers, as follows: “You
are a knowledgeable and skilled information integration sci-
ence expert. Please gradually think and answer the ques-
tions based on the given questions, options, and supplemen-
tary information. Please note that we not only need answers
but more importantly, we need rationales for obtaining an-
swers. Please combine your knowledge and supplementary
information to obtain reasoning and answers. Please prior-
itize using your knowledge to answer questions. If unable
to answer, maintain critical thinking and select effective in-
formation to assist you in selecting the most correct option
as the answer. Furthermore, please do not rely solely on
supplementary information, as the provided supplementary
information may not always be effective.”

This includes three key points. Firstly, we use prompts
to have Cantor play the role of an answer generator who is
knowledgeable and skilled at integrating information. This
not only ensures its professionalism and ability to make
basic judgments on questions but also ensures that it can
better integrate information obtained during the Execute-
Modularization stage. Secondly, to increase interpretability,
demonstrate the thinking process of Cantor, and improve its
thinking ability, we require Cantor to answer the basic prin-
ciples first, and then generate the corresponding options, as
shown in the pink box in Fig. 2. Finally, we request that
Cantor remain rational and critical, ensuring it does not
solely rely on the information obtained from the Execute-
Modularization stage. This approach promotes a more bal-
anced and comprehensive execute-synthesis process.

4. Experiments
In this section, we evaluate the proposed Cantor on two
visual reasoning datasets: ScienceQA [29] and Math-
Vista [30]. The experimental results show that Cantor out-
performs existing baselines in these tasks. Additionally, we
analyze the importance of visual information in visual rea-
soning tasks. Finally, we conduct a detailed analysis of Can-
tor’s key components.

4.1. Datasets

We evaluate our method on two visual reasoning task
benchmarks.

ScienceQA [29]: It is the first multimodal scientific
question-and-answer dataset annotated with detailed expla-
nations. The problems with datasets are systematically di-
vided into three main scientific disciplines: natural sci-
ences (NAT), social sciences (SOC), and language sciences
(LAN). We only use the ScienceQA test set, which contains
4241 questions and answers, of which 2,017 samples are
attached with images.

MathVista [30]: It is a dataset that combines the chal-
lenges of various mathematical and visual tasks. It requires
high levels of model granularity, deep visual understanding,
and combinatorial reasoning ability, making it a challeng-
ing dataset for current basic models. In the experiment, we
used Mathvista testmini, which includes 1000 text and im-
age pairs for Q&A.

4.2. Models

We use two models to evaluate our method, GPT-3.5 and
Gemini Pro 1.0, by calling their official API. Firstly, we use
GPT-3.5 to evaluate the impact of introducing high-level
perceptual information on LLM inference ability and ex-
plore the linkage ability between LLM and MLLM. Sec-
ondly, we use Gemini Pro 1.0, an advanced MLLM. We
desire to fully tap into the multimodal ability of MLLM and
improve its reasoning ability.

4.3. Implementation Details

We implement two versions of Cantor based on GPT-
3.5 and Gemini. Cantor(GPT-3.5) uses both GPT-3.5 as
the Decision Generator and Answer Generator during the
Decision-Generation and Execute-Synthesis stage. Differ-
ently, Cantor(Gemini) uses Gemini in these two stages.
For the Execute-Modularization stage, due to the need for
multimodality, we use Gemini as the MLLM in both ver-
sions, playing various roles as experts. For the captions
required for Cantor(GPT-3.5) in the Decision-Generation
stage, we generated them through Gemini Pro 1.0, with the
prompt ”Please provide the detailed title of this image as
much as possible”. In terms of models’ prompts, although
the two models have different preferences for prompts, we



Methods Supervised IMG NAT SOC LAN TXT NO G1-6 G7-12 Avg

Random Chance ✗ 40.08 40.28 46.13 29.25 47.45 33.66 39.35 40.67 39.83
Human Average [29] ✗ 87.50 90.23 84.97 87.48 89.60 88.10 91.59 82.42 88.40
UnifiedQA [20] ✓ 61.38 68.16 69.18 74.91 63.78 77.84 72.98 65.00 70.12
UnifiedQA (CoT) [20] ✓ 66.53 71.00 76.04 78.91 66.42 81.81 77.06 68.82 74.11
Multimodal-CoT [52] ✓ 82.90 87.52 77.17 85.82 87.88 86.83 84.65 85.37 84.91
LLaMA-Adapter [50] ✓ 80.32 84.37 88.30 84.36 83.72 86.90 85.83 84.05 85.19
LLaVa [28] ✓ 88.00 90.36 95.95 88.00 89.49 90.66 90.93 90.90 90.92
LLaVA (GPT-4) [28] ✓ 88.99 91.56 96.74 91.09 90.62 93.52 92.73 92.16 92.53
LLaMA-SciTune (CTOM) [16] ✓ 86.67 89.30 95.61 87.00 93.08 91.75 84.37 91.30 90.03
GPT-3 (zero-shot) [4] ✗ 65.74 75.04 66.59 78.00 74.24 79.58 76.36 69.87 74.04
GPT-3.5 (CoT) (AE) [35] ✗ 66.09 76.60 65.92 77.55 75.51 79.58 78.49 67.63 74.61
GPT-3.5 (CoT) (ALE) [35] ✗ 67.43 75.44 70.87 78.09 74.68 79.93 78.23 69.68 75.17
GPT-3.5 CoT [33] ✗ 67.92 78.82 70.98 83.18 77.37 86.13 80.72 74.03 78.31
QVix(GPT-3.5) [44] ✗ 55.00 - - - - - - - -
Chameleon (GPT-3.5) [31] ✗ 70.80 81.62 70.64 84.00 79.77 86.62 81.86 76.53 79.93
DD-CoT(GPT-3) [53] ✗ 69.96 78.60 73.90 80.45 77.27 82.93 80.65 73.50 78.09
DD-CoT(GPT3.5) [53] ✗ 72.53 80.15 76.72 82.82 78.89 85.02 82.86 75.21 80.15
Cantor(GPT-3.5) ✗ 77.54 80.37 85.49 84.00 77.27 86.83 85.61 76.60 82.39
Gemini ✗ 76.85 79.13 85.26 80.82 76.93 83.83 83.81 75.54 80.85
Cantor(Gemini) ✗ 82.40 84.24 87.85 84.09 82.11 86.97 88.18 79.17 84.96

Table 1. Accuracy scores (%) on ScienceQA [29], where bold entries indicate the best results, underlines indicate the second-best. We
compare the performance of our system with various baseline models including supervised models and unsupervised models. Question
classes: NAT = natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image context, NO = no
context, G1-6 = grades 1-6, G7-12 = grades 7-12.

use the same prompt for the sake of method universality
in Decision-Genetation stage and Execute-Synthesis stage.
The prompt in Execute-Modularization stage is generated
by the Cantor itself. For different datasets’ prompts, we
design different in-context examples based on their charac-
teristics, and the rest of the prompts are the same.

4.4. Main Results

ScienceQA. Tab. 1 shows the results of existing base-
lines compared to our method Cantor on ScienceQA. Using
GPT-3.5 as the base LLM to decision and answer, Cantor
achieves an accuracy of 82.39%, which is an improvement
of 4.08% over the chain-of-thought (CoT) prompted GPT-
3.5 [33]. Furthermore, with Gemini as the decision gener-
ator and answer generator, Cantor reaches an accuracy of
84.96%, significantly surpassing all training-free methods,
and even outperforming fine-tuned methods like UnifiedQA
(CoT) [52] and MM-CoT [52]. This not only demonstrates
the generality of Cantor but also shows that Cantor starts
with perception-based information for making better deci-
sions. Moreover, by invoking various expert modules, it can
introduce richer contextual information to both LLMs and
MLLMs, aiding in problem-solving.

Particularly noteworthy is that Cantor advances in the
multimodal domain. As shown in Tab. 2, we further present

Method Subject Grade Average
NAT SOC LAN G1-6 G7-12

LLaVA 37.0 61.5 33.3 52.3 30.5 46.2
MiniGPT 45.2 51.5 38.1 50.6 39.1 47.4
InstructBLIP 43.9 58.1 47.6 53.1 39.4 49.3
QVix (GPT-3.5) 48.0 67.1 38.1 60.6 40.5 55.0
Qwen-VL-Chat - - - - - 68.85
mPLUG-Ow12 - - - - - 68.75
Chameleon (GPT-3.5) - - - - - 70.8
SPHINX-2k - - - - - 70.6
LLaVA1.5 - - - - - 71.6

GPT-3.5 (+Caption) 70.14 62.43 68.18 78.59 52.32 67.18
Cantor (GPT-3.5) 73.45 83.38 88.64 84.31 66.55 77.54

Gemini 71.55 84.29 93.18 80.90 67.01 76.85
Cantor (Gemini) 79.49 86.39 93.18 86.98 71.26 82.40

Table 2. Accuracy scores (%) on ScienceQA for the IMG class,
which includes image context.

the accuracy of various methods on ScienceQA for the IMG
class, which includes image context. It can be seen that
Cantor based on GPT-3.5 significantly surpasses the base-



Model Input FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA ALL

Heuristics baselines

Random chance - 18.2 21.6 3.8 19.6 26.3 21.7 14.7 20.1 13.5 8.3 17.2 16.3 17.9
Frequent guess - 22.7 34.1 20.4 31.0 24.6 33.1 18.7 31.4 24.3 19.4 32.0 20.9 26.3

Large Language Models (LLMs)

Zero-shot GPT-3.5 Q only 21.9 26.9 9.1 38.6 23.5 27.7 15.9 25.7 21.6 9.9 41.5 20.5 23.5
Zero-shot GPT-4 Q only 22.3 37.0 7.0 39.2 27.4 33.6 17.4 35.6 16.2 9.2 45.8 19.5 26.1
Zero-shot Claude-2 Q only 21.9 34.1 13.4 36.1 29.1 32.8 20.4 33.3 13.5 12.1 36.4 20.5 26.4

Augmented Large Language Models (Augmented-LLMs)

2-shot CoT GPT-3.5 Q, Ic, It 27.5 29.3 36.0 49.4 29.1 31.0 32.9 31.0 16.2 17.4 50.8 37.2 33.2
2-shot CoT GPT-4 Q, Ic, It 27.9 31.7 31.2 51.9 28.5 33.5 30.9 32.2 13.5 12.5 58.2 37.9 33.2

2-shot PoT GPT-3.5 Q, Ic, It 24.5 26.4 23.7 33.5 27.9 27.8 26.1 28.0 18.9 13.2 33.6 29.9 26.8
2-shot PoT GPT-4 Q, Ic, It 30.1 39.4 30.6 39.9 31.3 37.4 31.7 41.0 18.9 20.1 44.3 37.9 33.9

GPT-3.5 Q, Ic 26.0 31.7 35.5 48.1 30.2 32.4 32.3 33.0 16.2 17.4 54.9 36.2 33.2
Cantor (GPT-3.5) Q, Ic 45.7 31.8 40.9 55.1 44.1 34.5 42.2 33.9 13.5 36.1 55.0 55.5 43.1

Multimodal Large Language Models (MLLMs)

IDEFICS-9B-Instruct Q, I 21.6 21.1 6.5 25.9 24.0 22.1 15.0 19.8 18.9 9.9 24.6 18.1 19.8
mPLUG-Owl-LLaMA-7B Q, I 22.7 23.6 10.2 27.2 27.9 23.6 19.2 23.9 13.5 12.7 26.3 21.4 22.2
miniGPT4-LLaMA-2-7B Q, I 18.6 26.0 13.4 30.4 30.2 28.1 21.0 24.7 16.2 16.7 25.4 17.9 23.1
LLaMA-Adapter-V2-7B Q, I 21.2 25.5 11.3 32.3 31.8 26.3 20.4 24.3 24.3 13.9 29.5 18.3 23.9
LLaVAR Q, I 21.9 25.0 16.7 34.8 30.7 24.2 22.1 23.0 13.5 15.3 42.6 21.9 25.2
InstructBLIP-Vicuna-7B Q, I 23.1 20.7 18.3 32.3 35.2 21.8 27.1 20.7 18.9 20.4 33.0 23.1 25.3
LLaVA-LLaMA-2-13B Q, I 26.8 29.3 16.1 32.3 26.3 27.3 20.1 28.8 24.3 18.3 37.3 25.1 26.1
Multimodal Bard Q, I 26.0 47.1 29.6 48.7 26.8 46.5 28.6 47.8 13.5 14.9 47.5 33.0 34.8

Gemini Q, I 37.1 29.3 38.1 57.5 36.3 36.0 35.7 31.4 24.3 25.7 50.0 41.9 38.8
Cantor (Gemini) Q, I 50.2 39.4 39.8 49.4 43.8 42.0 41.5 41.4 10.8 30.8 46.7 59.5 44.7

Table 3. Accuracy scores (%) on the testmini subset of MathVista, where bold entries indicate the best results, underlines indicate the
second-best. Input: Q: question, I: image, Ic: image caption, It: OCR text detected in the image. Task types: FQA: figure question
answering, GPS: geometry problem solving, MWP: math word problem, TQA: textbook question answering, VQA: visual question an-
swering. Mathematical reasoning types: ALG: algebraic reasoning, ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical
reasoning, NUM: numeric commonsense, SCI: scientific reasoning, STA: statistical reasoning. ALL: overall accuracy. The performance
results in the table come from [30].

line in various problems, and even surpasses well-known
MLLMs such as SPHINX [26] and LLaVA-1.5 [27]. This
indicates that clear perceptual decisions can trigger the rea-
soning ability of language models toward dense image in-
formation. At the same time, the experiment on Gemini also
shows that we further stimulate the visual reasoning ability
of MLLM.

MathVista. MathVista [30] is a challenging dataset
that integrating a variety of mathematical reasoning tasks
with visual tasks. Tab. 3 compares different method per-
formances. We also conduct experiments using GPT-3.5
and Gemini as baselines. From general visual question an-
swering to professional math word problems, Cantor has
greatly surpassed the baseline in almost all types of prob-

Analysis ScienceQA MathVista

No Visual Information 65.69 25.70
+ Rough Caption 63.21 25.10
+ Detailed Caption 74.37 33.20
+ Image 78.85 38.00

Table 4. The impact of different levels of visual information on
model’s performance.

lems. This indicates that correct decision and modular ex-
perts can stimulate their fine-grained, in-depth visual under-
standing and combinatorial reasoning abilities. It is worth
noting that Cantor (GPT-3.5) even surpasses GPT-4 based
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Figure 3. Proportions of Cantor’s invocation of expert modules
across three types of questions on ScienceQA.

on CoT and PoT.

4.5. Quantitative Analysis

Analsis Visual Cues for Decision Generation. We con-
duct a detailed analysis of the impact of visual information
on Gemini’s decision generation on ScienceQA and Math-
Vista, with the prompt “think step by step”. The results
are shown in Tab. 4. When we do not input any form of
visual information (including images and captions) in the
experiment, only the text of the question is input. It can
be seen that even without any visual information, MLLMs
like Gemini still possess strong logical reasoning ability in
pure language modal, demonstrating its superiority as a de-
cision generator. Then we step by step explore the impact
of incorporating visual information on Gemini. Firstly, we
add rough captions, such as “A photo of a black and white
cat.” Gemini’s performances unexpectedly decline on both
datasets. This indicates that overly simplistic captions not
only fail to promote MLLM, but can even mislead them into
making incorrect decisions. Next, we enrich the description
of captions to fully reproduce the image scene as much as
possible. It can be seen that with the addition of detailed
captions, Gemini’s performance has significantly improved
compared to those without visual information or rough cap-
tions. This indicates that visual information is indispens-
able for complex visual reasoning tasks. Finally, we replace
captions with images, and it can be seen that Gemini’s per-
formance increased by 4.48% and 4.8% on both datasets,
achieving the best performance at the same time. This is
also in line with intuition, as the generation of captions is
uncontrollable and may not necessarily contain key infor-
mation for solving problems, but images themselves must
have complete information. Therefore, in complex visual
reasoning tasks, using images instead of captions to obtain
visual information is a better solution for MLLM.

Expert Module Use Planning. The proportion of Can-
tor calling various expert modules on ScienceQA is shown
in Fig. 3. We find that GPT-3.5 and Gemini exhibit different
decision-generating behaviors. GPT-3.5 has a strong pref-
erence for using Object Quant Locator, with usage rates ex-
ceeding 80% in both Social Science and Language Science

Module Enable Only Disable Only

TextIntel Extractor 80.91(+4.06) 80.86(-1.54)
ObjectQuant Locator 80.27(+3.42) 81.01(-1.39)
VisionIQ Analyst 80.22(+3.37) 81.51(-0.89)
ChartSense Expert 79.13(+2.28) 81.71(-0.69)

Gemini / Cantor 76.85 82.40

Table 5. Performance increase with enabled modules and perfor-
mance drop with disabled modules on ScienceQA, where ”Enable
Only” only just this module is on, others off. ”Disable Only”
means just this module is off, others on. In the last line, ”Gem-
ini/Cantor” denotes the original Gemini baseline and the fully im-
plemented version of Cantor.

subjects, far exceeding other expert modules. We specu-
late that this is because GPT-3.5 is heavily influenced by
in-context examples. On the other hand, Gemini is rela-
tively balanced in expert module calls and does not exhibit
any particular preferences. In addition, the usage ratio of
both modules for ChartSense Expert is very low, especially
for the Language Science subject where the number of calls
is 0. This is because the proportion of questions related to
table content is very small in ScienceQA, and there is even
no question about table content in Language Science. This
demonstrates the rationality of the decisions made by the
two models. For different types of problems, the Language
Science subject focuses more on the language meaning be-
hind the image rather than being limited to the combination
of target numbers or positions. Therefore, the two models
call VisionIQ Analyst more frequently, reducing the use of
ObjectQuant Locator.

Ablation Study with Modules. We use Gemini as
the MLLM to investigate the impact of enabling and dis-
abling expert modules on the performance of ScienceQA.
The results are shown in Tab. 5. The results show that
the use of each expert module results in a gain (maximum
4.06%, minimum 2.28%), indicating that all expert mod-
ules play a crucial role. The TextIntel Extractor is the
most important among all modules, with the most signifi-
cant gains and decreases in performance. At the same time,
we can also find that enabling a module has a greater im-
pact on model performance than disabling it. We believe
that the effective high-level information obtained by an ex-
pert module(MLLM) is more generalized, compared with
lower-level visual-information (such as coordinates, color,
attributes, etc.). This higher-level information assists in the
execution of other module tasks. In our method, even if a
module is disabled, MLLM playing the role of other experts
can to some extent compensate for the lack of that module,
as they are not operating in isolation. We have also added
some results in the supplementary material to support this
view.



5. Conclusion

In this paper, we introduce an inspiring multimodal chain-
of-thought framework named Cantor, designed to enhance
the determining capabilities of MLLMs. By delving into the
pivotal role of visual information in the decision-generating
process, this paper highlights the importance of integrating
visual cues at the decision stage, effectively mitigating the
hallucination issues that may arise in LLMs. The novelty
of the Cantor framework also lies in its ability to enable
an MLLM to emulate the roles of domain-specific experts,
acquiring high-level information, and thereby facilitating
more rational and in-depth reasoning processes. Demon-
strated on the challenging benchmarks of ScienceQA and
MathVista involving complex visual reasoning tasks, Can-
tor has shown remarkable adaptability and efficacy, proving
its strong potential in addressing real-world reasoning prob-
lems across various domains.
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Cantor : Inspiring Multimodal Chain-of-Thought of MLLM

Supplementary Material

A. Prompts used in Cantor

Cantor consists of two stages: Decision-Generation and Ex-
ecution. For different models, Cantor (Gemini) and Can-
tor (GPT-3.5) use the same prompt during the Decision-
Generation stage and the Execute-Synthesis stage. During
the Execute-Synthesis stage, we use the generated sub-tasks
as the prompts. In terms of prompts for different datasets,
only the in-context learning examples are different, while
the other prompts are used the same.

A.1. Decision-Generation

In the Decision-Generation stage, the prompt template we
used includes task instructions and in-context learning ex-
amples. The task instructions, as shown in Fig 4, actually
include the guidance for the task, the functional definition
of the expert module, and the format requirements for the
answers. We design different in-context learning examples
based on the characteristics of ScienceQA and MathVista.
For ScienceQA, we use in-context learning examples as
shown in Figs 5, 6, and 7. For MathVista, we use in-context
learning examples as shown in Figs 8 and 9.

A.2. Execute-Modularization

In the Execute-Modularization stage, Cantor executes the
sub-tasks assigned by the Decision-Generation by calling
the expert module played by MLLM. Therefore, at this
stage, we do not use manually designed prompts and di-
rectly input the assigned sub-tasks into MLLM as prompts,
in the specific format of [Expert Module: a corresponding
sub-task]. For example: [ChartSense Expert: Extract the
values of all the bars from the chart.] and [VisionIQ Ana-
lyst: What is the total number of people in the image?].

A.3. Execute-Synthesis

We use the prompt template shown in Fig 10 to gener-
ate answers during the Execute-Synthesis stage. This in-
cludes prompts for generating answers and formatting re-
quirements for answers. This includes three key points: 1.
Play the role of an Answer Generator who is knowledgeable
and adept at integrating information. 2. Think carefully be-
fore answering. 3. Maintain rationality and criticality when
dealing with supplementary information.

B. Additional Analysis of Cantor
B.1. Case Presentation

In Figs 11, 12, 13, we show some specific cases of Cantor.
It can be seen that Cantor has good decision-generating and
practical problem-solving abilities.

B.2. Ablation Study with Modules

In this section, we further analyze the ablation study of
the expert module. In the ablation experiment in the main
text, we find that enabling a module has a greater impact
on model performance than disabling a module. We spec-
ulate that this is because when MLLM acts as various ex-
perts, it possesses a certain degree of universal higher-level
information capture capability. As shown in Fig 14, after
disabling ChartSense Expert, Cantor will adaptively adjust
the decision and instead ask VisionIQ Analyst questions to
obtain information about the chart. And VisionIQ Analyst
also correctly answers this sub-task and facilitates the fi-
nal inference to obtain the correct answer. This case illus-
trates that thanks to the versatility of MLLM, when playing
various experts using MLLM, even if one expert module is
disabled, the remaining expert modules can to some extent
compensate for the lack of that module.

However, disabling a certain expert module still affects
the integrity of Cantor. As shown in Fig 15, for chart infor-
mation extraction, compared to ChartSense Expert, when
using VisionIQ Analyst, it only extracts data for three bars
and ignores the other bars with values of 0. This indicates
that although different expert modules are to some extent
universal, they are not omnipotent. Specific expert modules
still focus on specific abilities and are lacking in other pro-
fessional abilities. This also demonstrates the importance
and irreplaceability of the four expert modules we propose.
At the same time, we believe that thanks to the excellent
scalability of Cantor, introducing more expert modules with
different functions will further improve its performance.

B.3. Impact of Visual Information Levels

In this section, we demonstrate the impact of different lev-
els of visual information on Gemini’s decision generation.
As shown in Fig 16, when asking which country is high-
lighted, the model cannot answer the question both in the
absence of visual information and with only a rough caption
provided. This is because the model cannot acquire effec-
tive visual information solely from the question or a rough
caption. When entering a detailed caption, even if it con-
tains a lot of content, it is irrelevant information and lacks



key information about what the highlighted country is. The
model still cannot answer the question. Only by inputting
images can the model obtain sufficient visual information
for problem-solving.

As shown in Fig 17, another case is shown. When the de-
tailed caption contains key information to answer the ques-
tion, the model can also provide the correct answer. How-
ever, it should be noted that in practical applications, we
cannot control whether the captions include key informa-
tion for solving problems. On the contrary, the image must
contain clues to the problem-solving. Therefore, inputting
images is the best way to obtain visual information during
decision generation.



You are a advanced question-answering agent equipped with four specialized modules to aid in 
analyzing and responding to queries about images:

1. TextIntel Extractor: This module extracts and converts text within images into editable text format. 
It's particularly useful for images containing a mix of text and graphical elements. When this module is 
required, specify your request as: "TextIntel Extractor: <specific task or information to extract>."

2. ObjectQuant Locator: This module identifies and locates objects within an image. It's adept at 
counting objects and determining their spatial arrangement. When you need this module, frame your 
request as: "ObjectQuant Locator: <object1, object2, ..., objectN>," listing the objects you believe need 
detection for further analysis.

3. VisionIQ Analyst: This module processes and interprets visual data, enabling you to ask any queries 
related to the image's content. When information from this module is needed, phrase your request as: 
"VisionIQ Analyst: <your question about the image>."

4.ChartSense Expert: This module specializes in analyzing and interpreting information from charts 
and graphs. It can extract data points, understand trends, and identify key components such as titles, 
axes, labels, and legends within a chart. When you require insights from a chart or graph, specify your 
request as: "ChartSense Expert: <specific aspect of the chart you're interested in or question you have 
about the chart>."

When faced with a question about an image, which will be accompanied by a hint that might not cover 
all its details, your task is to:

If the question can be answered directly based on the information provided without the need for 
detailed input from the modules, specify this explicitly. Do not disclose the answer itself.
Otherwise:
- Provide a rationale for your approach to answering the question, explaining how you will use the 
information from the image and the modules to form a comprehensive answer.
- Assign specific tasks to each module as needed, based on their capabilities, to gather additional 
information essential for answering the question accurately.

Your response should be structured as follows:

Answer:  
["This question does not require any modules and can be answered directly based on the information 
provided."] or [Rationale: Your explanation of how you plan to approach the question, including any 
initial insights based on the question and image information provided. Explain how the modules' input 
will complement this information.]

Modules' tasks (if applicable):  
1. TextIntel Extractor: [Specify the text or information to be extracted from the image, if necessary.]  
2. ObjectQuant Locator: [List the objects to be identified or counted in the image, if required.]  
3. VisionIQ Analyst: [Pose any specific questions you have about the image that require deeper visual 
analysis, if applicable.]
4. ChartSense Expert: [Extract chart data or specify any questions about the chart, if required.]

Ensure your response adheres to this format to systematically address the question using the available 
modules or direct analysis as appropriate.

Here are some examples:
…
(See Figure 5, 6, 7, 8, 9)
…

Please refer to the prompts and examples above to help me solve the following problem: <Question>.

Decision Generation Prompt

Figure 4. The prompt of the Decision-Generation stage.



Here are some examples:

"Question1":"Which solution has a higher concentration of blue particles?",
"Choices":[
"Solution B",
"neither; their concentrations are the same",
"Solution A"
],

Answer: 
1. Concentration in a solution refers to the amount of a substance (solute) present in a specified amount 
of another substance (solvent). 
2. To know the solvent volume, we need TextIntel Extractor to extract information about the volume 
from the image.
3. To understand the number of blue particles in solution A and solution B, we need a ObjectQuant 
Locator to detect them.

Modules' tasks:
1. TextIntel Extractor: Extract keywords related to solution volume in Solution A and Solution B.
2. ObjectQuant Locator: the number of blue particles in Solution A and Solution B.

"Question2":"Compare the average kinetic energies of the particles in each sample. Which sample has 
the higher temperature?",
"Choices":[
"neither; the samples have the same temperature",
"sample B",
"sample A"
],

Answer:
1. The temperature of particles in a substance is directly proportional to its average kinetic energy. The 
formula for kinetic energy of an particle is 1/2mv^2, where m represents the mass of the object and v 
represents its velocity. 
2. So TextIntel Extractor is needed to retrieve key information about mass and speed in the image.

Modules' tasks:
1. TextIntel Extractor: Extract keywords related to mass and speed in sample A and sample B.

In-context Learning Examples (ScienceQA)

Figure 5. In-context Learning Examples on ScienceQA.



"Question3":"Think about the magnetic force between the magnets in each pair. Which of the 
following statements is true?",
"Choices":[
"The magnetic force is stronger in Pair 2.",
"The magnetic force is stronger in Pair 1.",
"The strength of the magnetic force is the same in both pairs."
],

Answer:
1. The magnitude of magnetic force is independent of the direction of the magnetic pole, and is not 
related to whether the magnetic pole is attracted or repelled.
2. Different pairs of magnets will not affect each other.
3. The magnitude of magnetic force is inversely proportional to the distance between two magnets.
4. To know the distance between magnets, TextIntel Extractor is needed to extract distance information.

Modules' tasks:
1. TextIntel Extractor: Extract the distance values between two pairs of magnets in pair1 and pair2 
separately.

"Question4":"What is the expected ratio of offspring with mutated antennae to offspring with normal 
antennae? Choose the most likely ratio.",
"Choices":[
"1:3",
"0:4",
"3:1",
"2:2",
"4:0"
]

Answer:
1. In a group of fruit flies, some individuals have mutated antennae and others have normal antennae. 
In this group, the gene for the antenna type trait has two alleles. 
2. The allele 'A' is for mutated antennae, the allele 'a' is for normal antennae.
3. To know the specific gene composition, we need TextIntel Extractor to extract information from 
Punnett square.

Modules' tasks:
1. TextIntel Extractor: Extract the genotypes from the Punnett square.

In-context Learning Examples (ScienceQA)

Figure 6. In-context Learning Examples on ScienceQA.



"Question5":"Which month is the wettest on average in Christchurch?",
"Choices":[
"August",
"April",
"May"
]

Answer: 
1. This question provides a chart of Christchurch precipitation. We need to compare the monthly 
precipitation in Christchurch to determine which month is the wettest.
2. In order to determine which month has the highest precipitation, we need ChartSense Expert to 
extract the precipitation for each month

Modules' tasks:
1. ChartSense Expert: Extract the precipitation for each month from the chart.

"Question6": "What is the capital of New Jersey?",
"Choices": [
"Augusta",
"Montpelier",
"Newark",
"Trenton"
] 

Answer:
1. This question does not require any modules and can be answered directly based on the information 
provided.

In-context Learning Examples (ScienceQA)

Figure 7. In-context Learning Examples on ScienceQA.



Here are some examples: 
"Question1": Subtract all large rubber spheres. Subtract all big shiny cylinders. How many objects are 
left?
Answer:
1. First, we need to know the quantity of all objects. Secondly, it is important to know the number of 
large rubber spheres and the number of big shiny cylinders. Then perform the subtraction operation 
again.
2. To know the number of all objects, we need a ObjectQuant Locator.
3. To know the number of large rubber spheres, we need a ObjectQuant Locator.
4. To know the number of big shiny cylinders, we need a ObjectQuant Locator.

Modules' tasks:
1. ObjectQuant Locator: the number of all objects.
2. ObjectQuant Locator: the number of large rubber spheres.
3. ObjectQuant Locator: the number of big shiny cylinders.

"Question2":"What is the age gap between these two people in image?"
Answer:
1. To determine the age gap between two individuals, it is first necessary to know who they are and 
their date of birth.
2. Calculate the difference in their birth dates to obtain the age difference.

Modules' tasks:
1. VisionIQ Analyst: Who are the two people in the picture and what is their date of birth?

"Question3": "What time is shown? Answer by typing a time word, not a number. It is (_) after eight.",
"choices": [
"half",
"quarter",
"o'clock",
"quarter to",
"quarter past"
]
Answer:
1. To know the specific time, it is necessary to determine which number the hour and minute of the 
clock point to respectively.
2. Combine the numbers pointed by the hour hand and minute hand to obtain the final time and fill in 
the blanks.

Modules' tasks:
1. VisionIQ Analyst: the number the hour hand is pointing to.
2. VisionIQ Analyst: the number the minute hand is pointing to.

In-context Learning Examples (MathVista)

Figure 8. In-context Learning Examples on MathVista.



"Question4": "Is Light Seafoam less than Dark Salmon?",
"choices": [
"yes",
"no"
]
Answer:
1. We need to know the numerical values corresponding to Light Seafoam and Dark Salmon to 
determine their quantity relationship.
2. To obtain the numerical values corresponding to Light Seafoam and Dark Salmon, we need 
ChartSense Expert.

Modules' tasks:
1. ChartSense Expert: the value of Light Seafoam.
2. ChartSense Expert: the value of Dark Salmon.

"Question5": "How many algorithms have accuracies higher than 9?",
Answer:
1. First, we need to know the accuracy of each algorithm.
2. Then we can compare the accuracy of each algorithm with 9.
3. Finally, we can count the number of algorithms that have accuracy higher than 9.
4. To know the accuracy of each algorithm, we need ChartSense Expert to extract the information from 
the chart.

Modules' tasks:
1. ChartSense Expert: Extract the accuracy of each algorithm from the chart.

In-context Learning Examples (MathVista)

Figure 9. In-context learning examples on MathVista.

You are a knowledgeable and skilled information integration science expert. Please gradually think and 
answer the questions based on the given questions, options, and supplementary information. Please 
note that we not only need answers, but more importantly, we need rationales for obtaining answers. 
Please combine your knowledge and supplementary information to obtain reasoning and answers. 
Please prioritize using your knowledge to answer questions. If unable to answer, maintain critical 
thinking and select effective information to assist you in selecting the most correct option as the answer. 
Furthermore, please do not rely solely on supplementary information, as the provided supplementary 
information may not always be effective. Please do not answer with uncertainty, try your best to give 
an answer.
The expected response format is as follows: Rationale:<rationale> Answer:<answer>.
Please answer the following case: < Question> , <Supplementary information>.

Execute-Synthesis Prompt

Figure 10. The prompt of the Execute-Synthesis stage.



Which month is the wettest on average in 
Christchurch? 

Choices: 
(A) August
(B) April
(C) May      

Cantor
Supplementary Information:
1. This question provides a chart of Christchurch precipitation. We need to compare the monthly 
precipitation in Christchurch to determine which month is the wettest.
2. In order to determine which month has the highest precipitation, we need ChartSense Expert to 
extract the precipitation for each month.

Modules' tasks:
ChartSense Expert: Extract the precipitation for each month from the chart.
Answer: The precipitation for each month is:\n- January: 52 mm\n- February: 46 mm\n- March: 51 
mm\n- April: 50 mm\n- May: 68 mm\n- June: 67 mm\n- July: 67 mm\n- August: 52 mm\n- September: 
47 mm\n- October: 48 mm\n- November: 49 mm\n- December: 54 mm\n.

Answer Generator: 
Rationale: The month with the highest precipitation is May, with 68 mm of rain.

Answer: May.

The Specific Case of Cantor

Will these magnets attract or repel each other?

Choices: 
(A) repel
(B) attract

Cantor
Supplementary Information:
1. Like poles of a magnet repel each other. Unlike poles of a magnet attract each other.
2. To know the poles of the magnets, TextIntel Extractor is needed to extract information about the 
poles.

Modules' tasks:
TextIntel Extractor: Extract the poles of the two magnets.
Answer: The poles of the magnets are: - Magnet 1: North (N) and South (S) - Magnet 2: South (S) and 
North (N).

Answer Generator: 
Rationale: The south pole of magnet 1 is facing the south pole of magnet 2. Like poles repel each other.

Answer: repel.

Figure 11. The Specific Case of Cantor.



What is the probability that a cow produced by 
this cross will have solid coloring? 

Choices: 
(A) 4/4
(B) 0/4
(C) 1/4
(D) 2/4
(E) 3/4      

Cantor
Supplementary Information:
1. The probability of getting a cow with solid coloring is determined by the number of offspring with 
the genotype AA or Aa.
2. To know the specific gene composition, we need TextIntel Extractor to extract information from 
Punnett square.

Modules' tasks:
TextIntel Extractor: Extract the genotypes from the Punnett square.
Answer: aa, aa, aa, aa

Answer Generator: 
Rationale: Since all of the offspring have the aa genotype, this means that all of them will have white 
spots.

Answer: 0/4.

The Specific Case of Cantor

Which solution has a higher concentration of 
green particles?

Choices: 
(A) Solution B
(B) neither; their concentrations are the same
(C) Solution A      

Cantor
Supplementary Information:
1. Concentration in a solution refers to the amount of a substance (solute) present in a specified amount 
of another substance (solvent). 
2. To know the solvent volume, we need TextIntel Extractor to extract information about the volume 
from the image.
3. To understand the number of green particles in solution A and solution B, we need ObjectQuant 
Locator to detect them.

Modules' tasks:
TextIntel Extractor: Extract keywords related to solution volume in Solution A and Solution B.
Answer: Solution A: 25 mL Solution B: 25 mL
ObjectQuant Locator: the number of green particles in Solution A and Solution B.
Answer: Solution A has fewer green particles than Solution B.

Answer Generator: 
Rationale: Solution B has more green particles than Solution A.

Answer: Solution B.

Figure 12. The Specific Case of Cantor.



What is the perimeter of the rectangle?

Cantor
Supplementary Information:
To determine the perimeter of the rectangle, we need to know the length of all four sides and then add 
them together. Since the opposite sides of a rectangle are equal, we can calculate the perimeter using 
the formula: Perimeter = 2(length + width).

Modules' tasks:
VisionIQ Analyst: Determine the length and width of the rectangle.
Answer: In this case, VisionIQ Analyst would determine that the length of the rectangle is 2 yards and 
the width is 1 yard.

Answer Generator: 
Rationale: To determine the perimeter of the rectangle, we need to know the length of all four sides and 
then add them together. Since the opposite sides of a rectangle are equal, we can calculate the 
perimeter using the formula: Perimeter = 2(length + width)=2(2+1)=6.

Answer: 6 yd.

The Specific Case of Cantor

What is the blue kite in the lower right corner 
shaped like?

Choices: 
(A) ferre
(B) cat
(C) cloud
(D) octopus

Cantor
Supplementary Information:
1. To determine the shape of the blue kite in the lower right corner, we need to identify the blue kite in 
the lower right corner and then determine its shape.
2. To identify the blue kite in the lower right corner, we need to know the location of the blue kite in 
the lower right corner.
3. To determine the shape of the blue kite in the lower right corner, we need to know the shape of the 
blue kite in the lower right corner.

Modules' tasks:
ObjectQuant Locator: Identify the location of the blue kite in the lower right corner.
Answer: The blue kite in the lower right corner is located in the sky above the people.

VisionIQ Analyst: Determine the shape of the blue kite in the lower right corner.
Answer: The blue kite in the lower right corner is an octopus.

Answer Generator: 
Rationale: The blue kite in the lower right corner is shaped like an octopus because it has eight 
tentacles.

Answer: (D)

Figure 13. The Specific Case of Cantor.



What's the computing and wirless total for semiconductor demand in 2014?

Cantor
Supplementary Information:
1. First, we need to know the computing demand and wireless demand in 2014. Then we can add them 
together to get the total.
2. To know the computing demand and wireless demand in 2014, we need to extract the information 
from the chart.

Modules' tasks:
ChartSense Expert: Extract the computing demand in 2014 from the chart. 
Answer: The computing demand in 2014 was 105.4 billion dollars.
ChartSense Expert: Extract the wireless demand in 2014 from the chart. 
Answer: 91.9 billion dollars.

Answer Generator: 
Rationale: First, we need to know the computing demand and wireless demand in 2014. Then we can 
add them together to get the total. To know the computing demand and wireless demand in 2014, we 
need to extract the information from the chart. The computing demand in 2014 was 105.4 billion 
dollars. The wireless demand in 2014 was 91.9 billion dollars. So, the computing and wireless total for 
semiconductor demand in 2014 is 105.4 + 91.9 = 197.3 billion dollars.

Answer: 197.3.

Supplementary Information:
1. First, we need to know the computing and wireless demand in 2014. Then we can add these two 
numbers together to get the total.
2. To know the computing demand in 2014, we need the VisionIQ Analyst to extract the information 
from the chart.
3. To know the wireless demand in 2014, we need the VisionIQ Analyst to extract the information from 
the chart.

Modules' tasks:
VisionIQ Analyst: What's the computing demand in 2014? 
Answer: The computing demand for VisionIQ Analyst in 2014 was 105.4 billion US dollars.
VisionIQ Analyst: What's the wireless demand in 2014? 
Answer: The wireless demand in 2014 was $91.9 billion.

Answer Generator: 
Rationale: First, we need to know the computing and wireless demand in 2014. Then we can add these 

two numbers together to get the total. The computing demand in 2014 was 105.4 billion US dollars. 
The wireless demand in 2014 was $91.9 billion. So, the computing and wireless total for 
semiconductor demand in 2014 is 105.4 + 91.9 = 197.3 billion US dollars.

Answer: 197.3.

Cantor (without ChartSense Expert)

Ablation Study with Expert Module 

Figure 14. Case study on enabling and disabling Expert Module.



Is the sum of two lowest bar is greater then the largest bar?

Choices:
(A) Yes
(B) No

Cantor
Supplementary Information:
1. First, we need to know the values of all the bars.
2. Then we can find the two lowest bars and add their values.
3. Finally, we can compare the sum of the two lowest bars with the value of the largest bar.
4. To know the values of all the bars, we need ChartSense Expert to extract the information from the 
chart.

Modules' tasks:
ChartSense Expert: Extract the values of all the bars from the chart. 
Answer: Ecuador: 0.02%  China: 0.02%  Ireland: <0.01%  Armenia: 0%  Israel: 0%.

Answer Generator:
Rationale: First, we need to know the values of all the bars. We can use the ChartSense Expert to 
extract the information from the chart. The values of the bars are: Ecuador: 0.02%, China: 0.02%, 
Ireland: <0.01%, Armenia: 0%, Israel: 0%. Then we can find the two lowest bars and add their values. 
The two lowest bars are Armenia and Israel, and their values are 0% and 0%, respectively. So, the sum 
of the two lowest bars is 0% + 0% = 0%. Finally, we can compare the sum of the two lowest bars with 
the value of the largest bar. The largest bar is Ecuador, and its value is 0.02%. So, the sum of the two 
lowest bars is 0%, which is less than the value of the largest bar, 0.02%. Therefore, the answer is (B) 
No.

Answer: (B).

Ablation Study with Expert Module 

Supplementary Information:
1.To solve this problem, we need to know the values of all the bars.
2.Then we can calculate the sum of the two lowest bars and compare it with the largest bar.
3.Finally, we can determine whether the sum of the two lowest bars is greater than the largest bar.
4.To know the values of all the bars, we need VisionIQ Analyst to extract the information from the 
chart.

Modules' tasks:
VisionIQ Analyst: Extract the values of all the bars from the chart. 
Answer: Ecuador: 0.02%\nChina: 0.02%\nIreland: <0.01%

Answer Generator:
Rationale: The sum of two lowest bar is 0.02% (China) + 0.01% (Ireland) = 0.03%. The largest bar is 
0.02% (Ecuador). 0.03% > 0.02%. So the answer is yes. Answer: (A).

Cantor (without ChartSense Expert)

Figure 15. Case study on enabling and disabling Expert Module.



Which country is highlighted?

Choices: 
(A) Australia
(B) Papua New Guinea
(C) Fiji
(D) New Zealand            

No visual Information
Response:
1. Read the question: Which country is highlighted?
2. Look at the provided choices: ['Australia', 'Papua New Guinea', 'Fiji', 'New Zealand']
3. Since no visual information is provided, we cannot determine which country is highlighted.
4. Therefore, we cannot answer the question.

Detailed Caption: This is a map of Australia and New Zealand. Australia is the sixth-largest country 
in the world by land area, and New Zealand is the 75th-largest. Australia is located in the Southern 
Hemisphere and is bordered by the Indian Ocean to the west and the Pacific Ocean to the east. New 
Zealand is located in the South Pacific Ocean and is made up of two main islands, the North Island and 
the South Island.

Response: 
1. Read the caption and find that the map shows Australia and New Zealand.
2. The question asks which country is highlighted.
3. The caption does not mention which country is highlighted.
4. The answer is not available in the context.

+ Detailed Caption

Different levels of visual information

+ Rough Caption
Rough Caption: A blurry picture of a blue and white object.

Response: 
1. The caption mentions a blurry picture of a blue and white object.
2. The choices are all countries.
3. We can't identify the object in the picture, so we can't use it to determine the country.
4. Therefore, we can't answer this question.

Response:
The highlighted country is New Zealand.
The map shows the Australia and Oceania region. Australia is the largest country in the region and is 
located on the Australian continent. New Zealand is a country located in the South Pacific Ocean. It 
consists of two main islands, the North Island and the South Island.

+ Image

Figure 16. The impact of different levels of visual information on model’s responses.



Which property do these three objects 
have in common?

Choices: 
(A) rough
(B) yellow
(C) sticky

No visual Information
Response:
Read the question carefully and identify the three objects in question. The question does not specify 
what the three objects are, so we cannot answer this question from the provided context.
The correct answer is: None of the above.

Detailed Caption: The image shows three items. A pair of yellow rain boots with blue edges and white 
soles, a yellow rubber duck with a blue beak and black eyes, and a yellow lemon. The items are all 
labeled with their names.

Response: 
1. Identify the three objects in the image:   - Rain boots   - Rubber duck   - Lemon
2. Examine each object's properties: -Rain boots: Yellow, waterproof, flexible   - Rubber duck: Yellow, 
smooth, buoyant    -Lemon: Yellow, oval-shaped, acidic
3. Find the common property:   - All three objects share the color yellow.
Therefore, the correct answer is yellow.

+ Detailed Caption

Different levels of visual information

+ Rough Caption
Rough Caption: A series of photos showing different types of toys.

Response: 
1. The first photo shows a toy car. The toy car is yellow.
2. The second photo shows a toy ball. The toy ball is sticky.
3. The third photo shows a toy brick. The toy brick is rough.
The three objects have the property of being toys in common.
The final answer is ['Toys’].

Response:
Rationale: The three objects in the image are a pair of rain boots, a rubber duck, and a lemon. They all 
have the property of being yellow.
Answer: yellow

+ Image

Figure 17. The impact of different levels of visual information on model’s responses.
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