
GraspNet-1Billion: A Large-Scale Benchmark

for General Object Grasping

Hao-Shu Fang, Chenxi Wang, Minghao Gou. Cewu Lu1

Shanghai Jiao Tong University

fhaoshu@gmail.com, {wcx1997,gmh2015,lucewu}@sjtu.edu.cn

Abstract

Object grasping is critical for many applications, which

is also a challenging computer vision problem. However,

for cluttered scene, current researches suffer from the prob-

lems of insufficient training data and the lacking of eval-

uation benchmarks. In this work, we contribute a large-

scale grasp pose detection dataset with a unified evaluation

system. Our dataset contains 97,280 RGB-D image with

over one billion grasp poses. Meanwhile, our evaluation

system directly reports whether a grasping is successful by

analytic computation, which is able to evaluate any kind

of grasp poses without exhaustively labeling ground-truth.

In addition, we propose an end-to-end grasp pose predic-

tion network given point cloud inputs, where we learn ap-

proaching direction and operation parameters in a decou-

pled manner. A novel grasp affinity field is also designed to

improve the grasping robustness. We conduct extensive ex-

periments to show that our dataset and evaluation system

can align well with real-world experiments and our pro-

posed network achieves the state-of-the-art performance.

Our dataset, source code and models are publicly available

at www.graspnet.net.

1. Introduction

Object grasping is a fundamental problem and has many

applications in industry, agriculture and service trade. The

key of grasping is to detect the grasp poses given visual in-

puts (image or point cloud) and it has drawn many attentions

in computer vision community [11, 30].

Though important, there are currently two main hin-

drances to obtaining further performance gains in this area.

Firstly, the grasp poses have different representations in-

cluding rectangle [36] and 6D pose [41] representation and

are evaluated with different metrics [16, 14, 41] correspond-

1Cewu Lu is corresponding author, member of Qing Yuan Research

Institute and MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai

Jiao Tong University, China

Data

…

Scene-level

Grasp Poses

Object 6D Poses
Object-level

Grasp Poses

Figure 1. Our methodology for building the dataset. We collect

data with real-world sensors and annotate grasp poses for every

single object by analytic computation. Object 6D poses are manu-

ally annotated to project the grasp poses from object coordinate to

the scene coordinate. Such methodology greatly reduces the labor

of annotating grasp poses. Our dataset is both densely annotated

and visually coherent with real world.

ingly. The difference in evaluation metrics makes it diffi-

cult to compare these methods directly in a unified man-

ner, while evaluating with real robots would dramatically

increase the evaluation cost. Secondly, it is difficult to

obtain large-scale high quality training data [5]. Previous

datasets annotated by human [16, 50, 7] are usually small

in scale and only provide sparse annotations. While obtain-

ing training data from the simulated environment [26, 9, 48]

can generate large scale datasets, the visual domain gap be-

tween simulation and reality would inevitably degrade the

performance of algorithms in real-world application.

To form a solid foundation for algorithms built upon, it

is important for a benchmark to i) provide data that aligns

well with the visual perception from real world sensors, ii)

be densely and accurately annotated with large-scale grasp

pose ground-truth and iii) evaluate grasp poses with differ-

ent representations in a unified manner. This is nontrivial,

especially when it comes to the data annotation. Given an

image or scene, it’s hard for us to manually annotate end-

less grasp poses in continuous space. We circumvent this

issue by exploring a new direction, that is, collecting data

111444

from the real world and annotating them by analytic com-

putation in simulation, which leverages the advantages from

both sides.

Specifically, inspired by previous literature [41], we pro-

pose a two-step pipeline to generate tremendous grasp poses

for a scene. Thanks to our automatic annotation process, we

built the first large-scale in-the-wild grasp pose dataset that

can serve as a base for training and evaluating grasp pose

detection algorithms. Our dataset contains 97,280 RGB-D

images taken from different viewpoints of over 190 clut-

tered scenes. For all 88 objects in our dataset, we provide

accurate 3D mesh models. Each scene is densely annotated

with object 6D poses and grasp poses, bringing over one

billion grasp poses, which is 5 orders of magnitude larger

than previous datasets. Moreover, embedded with an online

evaluation system, our benchmark is able to evaluate cur-

rent mainstream grasping detection algorithms in a unified

manner. Experiments also demonstrate that our benchmark

can align well with real-world experiments. Fig 1 shows the

methodology for building our dataset.

Given such a large scale dataset, we further propose a

novel method for learning grasp poses. For better geomet-

ric reasoning and context encoding, we propose an end-to-

end 3D based grasp pose detection network. Instead of

predicting grasp pose matrix directly, our network seeks

a more robust learning way that learns approaching direc-

tion and operation parameters (e.g. in-plane rotation, grasp

width) explicitly under a unified objective. Moreover, to

improve the perturbation resistance of the grasp pose, we

propose a novel representation called grasp affinity fields

to make our network being robust to perturbation. Exper-

iments demonstrate the effectiveness and efficiency of our

proposed method.

2. Related Work

In this section, we first review deep learning based grasp-

ing detection algorithms, followed by related datasets in

this area. Point cloud based deep learning methods are also

briefly reviewed.

Deep Learning Based Grasping Prediction Algorithms

For deep learning based grasping detection algorithms, they

can be divided into three main categories. The most popu-

lar one is to detect a graspable rectangle based on RGB-D

image input [16, 21, 36, 13, 30, 22, 26, 50, 1, 2, 7, 27, 28].

Lenz et al. [21] proposed a cascaded method with two net-

works that first prunes out unlikely grasps and then eval-

uates the remaining grasps with a larger network. Red-

mon et al. [36] proposed a different network structure that

directly regresses the grasp poses in a single step manner,

which is faster and more accurate. Mahler et al. [26] pro-

posed a grasp quality CNN to predict the robustness scores

of grasping candidates. Zhang [50] and Chu [7] extended

it to multi-object scenarios. The grasp poses generated by

these methods are constrained in 2D plane which limits the

degree of freedom of grasp poses. With the rapid devel-

opment in monocular object 6D pose estimation [17, 45],

some researchers [8] predict 6D poses of the objects and

project predefined grasp poses to the scene. Such meth-

ods have no limitation of grasping orientation, but require a

prior knowledge about the object shape. Recently, starting

from [42] there is a new line of researches [41, 24, 28, 35]

that propose grasping candidates on partial observed point

clouds and output a classification score for each candidate

using 3D CNN. Such methods require no prior knowledge

about the objects. Currently, these methods are evaluated in

their own metrics and hard to compare to others.

Grasping Dataset Cornell grasping dataset [16] first pro-

posed rectangle representation for grasping detection in im-

ages. Single object RGB-D images are provided with rect-

angle grasp poses. [7, 50] built datasets with the same

protocol but extend to multi-object scenarios. These grasp

poses are annotated by human. [30, 22] collect annotations

with real robot experiments. These data labeling methods

are time consuming and require strong hardware support.

To avoid such problem, some recent works explore using

simulated environment [26, 9, 48, 28, 4] to anotate grasp

poses. They can generate a much larger scale dataset but

the domain gap of visual perception is always a hindrance.

Beyond rectangle based annotation, GraspSeg [2] provides

pixel-wise annotations for grasp-affordance segmentation

and object segmentation. For 6D pose estimation, [45]

contributes a dataset with 21 objects and 92 scenes. These

datasets mainly focus on a subarea of grasp pose detection.

In this work, we aim to build a dataset that is much larger in

scale and diversity and covers main aspects of object grasp-

ing detection.

Point Cloud Based Deep Learning Qi et al. first pro-

posed PointNet [33] to directly learn features from raw

point cloud inputs. After that, many methods [34, 38, 3,

23, 12, 43, 39, 40, 20, 19, 49, 47, 44, 46, 15] are pro-

posed to perform point cloud classification and segmenta-

tion. Beyond that, some recent works [31, 37, 32] extended

the PointNet framework to the area of 3D object detection.

The most similar network structure to ours is that of Qin et

al. [35], which also predicted grasp poses based on Point-

Net. In this work, we design an end-to-end network with a

new representation of grasp pose rather than direct regres-

sion.

3. GraspNet-1Billion

We next describe the main features of our dataset and

how we build it.

11445

View 1 View 2

Kinect4A RealSense

6D-Pose 6DoF Grasp Poses

Rectangle-based

Grasp Poses
Instance Masks

Unified Evaluation System

Object Models

……

Rich Data Dense Annotations

Grasp? ×

Grasp? √

Multi-View

Multi-Cam

RGB

Depth

Point Clouds

Figure 2. The key components of our dataset. RGB-D images are taken using both RealSense camera and Kinect camera from different

views. The 6D pose of each object, the grasp poses, the rectangle grasp poses and the instance masks are annotated. A unified evaluation

system is also provided.

3.1. Overview

Previous grasping dataset either focuses on isolated ob-

ject [16, 26, 9, 48] or only labels one grasp per scene [30,

22]. Few datasets consider multi-object-multi-grasp setting

and are small in scale [50, 7] due to the labor of annota-

tion. Moreover, most of the datasets adopt the rectangle

based representation [16] of grasp pose, which constrains

the space for placing the gripper. To overcome these is-

sues, we propose a large-scale dataset in cluttered scenario

with dense and rich annotations for grasp pose prediction

named GraspNet-1Billion. Our dataset contains 88 daily

objects with high quality 3D mesh models. The images are

collected from 190 cluttered scenes, each contributes 512

RGB-D images captured by two different cameras, bring-

ing 97,280 images in total. For each image, we densely an-

notate 6-DoF grasp poses by analytic computation of force

closure [29]. The grasp poses for each scene varies from

3,000,000 to 9,000,000, and in total our dataset contains

over 1.1 billion grasp poses. Besides, we also provide ac-

curate object 6D pose annotations, rectangle based grasp

poses, object masks and bounding boxes. Each frame is also

associated with a camera pose, thus multi-view point cloud

can be easily fused. Fig 2 illustrates the key components of

our dataset.

3.2. Data Collection

We select 32 objects that are suitable for grasping from

the YCB dataset [6], 13 adversarial objects from DexNet

2.0 [26] and collects 43 objects of our own to construct our

object set. The objects have suitable sizes for grasping and

are diverse in shape, texture, size, material, etc. We believe

that diverse local geometry can bring better generalization

ability for the algorithm. To collect data of cluttered scene,

we attach the cameras to a robot arm since it can repeat

the trajectory precisely and help automatizing the collect-

ing process. Camera calibration is conducted before data

collection to obtain accurate camera poses. Considering

Gripper

Depth

Sampling

Grasp

View

Sampling

In-plane

Rotation

Sampling

Grasp Point

Sampling

Grasp Projection

Collision Detection

Grasp Generation

& Annotation

Grasp Generation

& Annotation

Figure 3. Grasp pose annotation pipeline. The grasp point is firstly

sampled from point cloud. Then the grasp view, the in-plane ro-

tation and the gripper depth are sampled and evaluated. Finally,

the grasps are projected on the scene using the 6D pose of each

object. Collision detection is also conducted to avoid the collision

between grasps and background or other object.

different quality of depth image will inevitably affect the

algorithms, we adopt two popular RGB-D cameras, Intel

RealSense 435 and Kinect 4 Azure, to simultaneously cap-

ture the scene and provide rich data. For each scene, we

randomly pick around 10 objects from our whole object set

and place them in a cluttered manner. The robot arm then

moves along a fixed trajectory that covers 256 distinct view-

points on a quarter sphere. A synchronized image pair from

both RGB-D cameras as well as their camera poses will be

saved. Note that for camera calibration, we conducted cam-

era extrinsic parameter calibration to avoid the errors from

forward kinematics. To be specific, we took photos of a

fixed ArUco marker at the 256 data collection points. The

camera poses w.r.t the marker coordinate system were ob-

tained. These camera poses are pretty accurate and work

well for our dataset. The detail setting of our data collec-

tion process will be provided in supplementary materials.

3.3. Data Annotation

6D Pose Annotation With 97,280 images in total, it

would be labor consuming to annotate 6D poses for each

11446

Dataset
Grasps

/ scene

Objects

/ scene

Grasp

label

6D

pose

Total

objects

Total

grasps

Total

images
Modality

Data

source

Cornell [16] ∼8 1 Rect. No 240 8019 1035 RGB-D 1 Cam.

Pinto et al. [30] 1 - Rect. No 150 50K 50K RGB-D 1 Cam.

Levine et al. [22] 1 - Rect. No - 800K 800K RGB-D 1 Cam.

Mahler et al. [26] 1 1 Rect. No 1,500 6.7M 6.7M Depth Sim.

Jacquard [9] ∼20 1 Rect. No 11K 1.1M 54K RGB-D Sim.

Zhang et al. [50] ∼20 ∼3 Rect. No - 100K 4683 RGB 1 Cam.

Multi-Object [7] ∼30 ∼4 Rect. No - 2904 96 RGB-D 1 Cam.

VR-Grasping-101 [48] 100 1 6-DOF Yes 101 4.8M 10K RGB-D Sim.

YCB-Video [45] None ∼5 None Yes 21 None 134K RGB-D 1 Cam.

GraspNet (ours) 3∼9M ∼10 6-DOF Yes 88 ∼1.2B 97K RGB-D 2 Cams.

Table 1. Summary of the properties of publicly available grasp datasets. “Rect.”, “Cam.” and “Sim.” are short for Rectangle, Camera and

Simulation respectively. “-” denotes the number is unknown.

frame. Thanks to the camera poses recorded, we only need

to annotate 6D poses for the first frame of each scene. The

6D poses will then be propagated to the remaining frames

by:

P
j
i = cam

−1
i cam0P

j
0, (1)

where P
j
i is the 6D pose of object j at frame i and cami

is the camera pose of frame i. All the 6D pose annotations

were carefully refined and double-checked by several anno-

tators to ensure high quality. Object masks and bounding

boxes are also obtained by projecting objects onto the im-

ages using 6D poses.

Grasp Pose Annotation Different from labels in com-

mon vision tasks, grasp poses distribute in a large and con-

tinuous search space, which brings infinite annotations. An-

notating each scene manually would be dramatically labor

expensive. Considering all the objects are known, we pro-

pose a two stage automated pipeline for grasp pose annota-

tion, which is illustrated in Fig. 3.

First, grasp poses are sampled and annotated for each

single object. To achieve that, high quality mesh models

are downsampled such that the sampled points (called grasp

points) are uniformly distributed in voxel space. For each

grasp point, we sample V views uniformly distributed in a

spherical space. Grasp candidates are searched in a two di-

mensional grid D×A, where D is the set of gripper depths

and A is the set of in-plane rotation angles. Gripper width

is determined accordingly such that no empty grasp or col-

lision occurs. Each grasp candidate will be assigned a con-

fidence score based on the mesh model.

We adopt an analytic computation method to grade each

grasp. The force-closure metric [29, 41] has been proved

effective in grasp evaluation: given a grasp pose, the associ-

ated object and a friction coefficient µ, force-closure metric

outputs a binary label indicating whether the grasp is antipo-

dal under that coefficient. The result is computed based on

physical rules, which is robust. Here we adopt an improved

metric described in [24]. With ∆µ = 0.1 as interval, we de-

crease µ gradually from 1 to 0.1 step by step until the grasp

is not antipodal. The grasp with lower friction coefficient µ

has more probability of success. Thus we define our score

s as:

s = 1.1− µ, (2)

such that s lies in (0, 1].
Second, for each scene, we project these grasps to the

corresponding objects based on the annotated 6D object

poses:

P
i = cam0P

i
0,

G
i
(w) = P

i ·Gi
(o),

(3)

where P
i is the 6D pose of the i-th object in the world

frame, G
i
(o) is a set of grasp poses in the object frame

and G
i
(w) contains the corresponding poses in the world

frame. Besides, collision check is performed to avoid in-

valid grasps. Following [41], we adopt the simplified grip-

per model as shown in Fig. 4 and check whether there are

object points in this area. After these two steps we can gen-

erate densely distributed grasp set G(w) for each scene. Ac-

cording to statistics, the ratio of positive and negative labels

in our dataset is around 1:2. We conduct real world ex-

periment in Sec. 5 using our robot arm and verify that our

generated grasp poses can align well with real world grasp-

ing.

3.4. Evaluation

Dataset Split For our 190 scenes, we use 100 for training

and 90 for testing. Specifically, we further divide our test

sets into 3 categories: 30 scenes with seen objects, 30 with

unseen but similar objects and 30 for novel objects. We

hope that such setting can better evaluate the generalization

ability of different methods.

New Metrics To evaluate the prediction performance of

grasp pose, previous methods adopt the rectangle metric

that consider a grasp as correct if: i) the rotation error is

less than 30◦ and ii) the rectangle IOU is larger than 0.25.

There are several drawbacks of such metric. Firstly, it

can only evaluate rectangle representation of grasp pose.

11447

Secondly, the error tolerance is set rather high since the

groundtruth annotations are not exhaustive. It might over-

estimate the performance of grasping algorithm. Currently,

the Cornell dataset [16] has achieved over 99% accuracy. In

this work, we adopt an online evaluation algorithm to eval-

uate the grasp accuracy.

We first illustrate how we classify whether a single grasp

pose is true positive. For each predicted grasp pose P̂i,

we associate it with the target object by checking the point

cloud inside the gripper. Then, similar to the process of gen-

erating grasp annotation, we can get a binary label for each

grasp pose by force-closure metric, given different µ.

For cluttered scene, grasp pose prediction algorithms are

expected to predict multiple grasps. Since for grasping,

we usually conduct execution after the prediction, the per-

centage of true positive is more important. Thus, we adopt

Precision@k as our evaluation metric, which measures the

precision of top-k ranked grasps. APµ denotes the aver-

age Precision@k for k ranges from 1 to 50 given friction

µ. Similar to COCO [25], we report APµ at different µ.

Specifically, we denote AP for the average of APµ ranging

from µ = 0.2 to µ = 1.0, with ∆µ = 0.2 as interval.

To avoid dominated by similar grasp poses or grasp

poses from single object, we run a pose-NMS before evalu-

ation. For the details of pose-NMS please refer to the sup-

plementary file.

3.5. Discussion

In this work, we aim to provide a general benchmark

for the problem of object grasping. The grasping problem

can be decoupled as: i) predict all possible grasp poses

(by CV community) and ii) conduct motion planning for

specific robotic setting and grasp (by robotics community).

For our benchmark, we focus on the vision problem and

decouple the labels from the design choices of the robotic

environment as much as possible. We provided multiple

cameras and multiple views, simplified the gripper model

and the collision detection to improve the generality of the

dataset. The motion planning and collisions with real grip-

per and robot arm are not considered as they are related to

the robotic environment and should be solved at run-time.

We hope our dataset can facilitate fair comparison among

different grasp pose detection algorithms.

We compare our datasets with other publicly available

grasp datasets. Table 1 summaries the main differences at

several aspects. We can see that our dataset is much larger in

scale and diversity. With our two-step annotation pipeline,

we are able to collect real images with dense annotations,

which leverages the advantages from both sides.

For grasp pose evaluation, due to the continuity in grasp-

ing space, there are in fact infinite feasible grasp poses.

The previous method that pre-computed ground truth for

evaluating grasping, no matter collected by human anno-

Y

Z

O

(a)

R

(b)

Figure 4. (a) The coordinate frame of the gripper. (b) Our new

representation of grasp pose. “obj.” denotes object point. Our

network needs to predict i) the approaching vector V , ii) the ap-

proaching distance from grasp point to the origin of gripper frame

D, iii) the in-plane rotation around approaching axis R and iv) the

gripper width W .

tation [16] or simulation [9], cannot cover all feasible so-

lution. In contrast, we do not pre-compute labels for the

test set, but directly evaluate them by calculating the qual-

ity score using force closure metric [29]. Such evaluation

method does not assume the representation of the grasp

pose, thus is general in practice. Related APIs is made pub-

licly available to facilitate the research in this area.

4. Method

We then introduce our end-to-end grasp pose detection

network, which is illustrated in Fig. 5. Our grasp pose rep-

resentation is introduced in 4.1. Accordingly, we mainly

divide our pipeline into three parts: Approach Network, Op-

eration Network and Tolerance Network.

4.1. Grasp Pose Representation

Similar to previous works [41, 24], we define the frame

of the two-finger parallel gripper as Fig. 4(a). With the

known gripper frame, grasp pose detection aims to predict

the orientation and translation of the gripper under the cam-

era frame, as well as the width of the gripper. We represent

the grasp pose G as

G = [R t w], (4)

where R ∈ R
3×3 denotes the gripper orientation, t ∈ R

3×1

denotes the center of grasp and w ∈ R denotes the gripper

width that is suitable for grasping the target object. For neu-

ral network, directly learning the rotation matrix in R
3×3 is

not intuitive. The explicit constraints, such as the determi-

nant of rotation matrix must equal one and the inverse of

it is its transpose, are difficult to learn. Instead, we adopt

the representation from 6D pose estimation [17] that decou-

ples the orientation as viewpoint classification and in-plane

rotation prediction. Our problem is then reformulated as

follows without loss of generality: for a grasp point on the

surface of objects, we predict the feasible approaching vec-

tors, approaching distance, in-plane rotation along the ap-

proaching axis and a tight gripper width. Fig. 4(b) explains

11448

Figure 5. Overview of our end-to-end network. (a) For a scene point cloud with N point coordinates as input, a point encoder-decoder

extracts cloud features and samples M points with C-dim features. (b) Approaching vectors are predicted by ApproachNet and are used to

(c) grouped points in cylinder regions. (d) OperationNet predicts the operation parameters and ToleranceNet predicts the grasp robustness.

See text for more details.

our formulation of grasp pose. Following such formulation,

our network design is illustrated as follows.

4.2. Approach Network and Grasp Point Selection

The approaching vectors and feasible grasp points are

jointly estimated by our Approach Network, since some di-

rections are not suitable for grasping due to occlusion.

Base Network To build a solid foundation for viewpoint

classification, we first use a base network for capturing well

point cloud geometric features. In this work, we adopt

PointNet++ [34] backbone network. Other networks like

VoxelNet [51] can be also adopted. Taking a raw point

cloud with size N × 3 as input, our base network outputs

a new set of points with C channels features. We subsam-

ple M points with farthest point sampling [10] to cover the

whole scene.

Output Head We classify feasible approaching vectors

into V predefined viewpoints. Meanwhile, for each point,

the Approach Network outputs two values to predict its con-

fidence of graspable or not. Therefore, the output of our

proposal generation network is M × (2 + V), where 2 de-

notes the binary class of graspable or not and V denotes the

number of predefined approaching vectors.

Loss Function For each candidate point, we assign it a

binary label indicating whether it is graspable or not. First,

points which are not on the objects are assigned negative

labels. Next, for points on the objects, we found those who

have at least one graspable ground-truth within 5mm ra-

dius neighbor area. Their graspable scores are assigned as

1. Finally, points on the objects but cannot find reference

ground-truth grasps are ignored, which do not contribute to

the training objective.

For each graspable point, V virtual approaching vectors

are sampled around it under the camera frame. Now, we

can define the approaching vector of jth virtual view of ith

graspable point as vij . We then look for its ground-truth

reference vector v̂ij on the sphere space of the ith point.

Similarly, we only consider reference vectors that are within

5 degree bound. With such definition, our target function for

an input point cloud is defined as follows:

LA({ci}, {sij}) =
1

Ncls

∑

i

Lcls(ci, c
∗

i)

+λ1
1

Nreg

∑

i

∑

j

c∗i 1(|vij , v
∗

ij | < 5◦)Lreg(sij , s
∗

ij).
(5)

Here, ci denotes the binary prediction of graspable or not

for point i. c∗i is assigned 1 if point i is positive and 0

if negative. sij denotes the predicted confidence score for

viewpoint j of point i. s∗ij is the corresponding ground-

truth, which is obtained by choosing the maximum grasp

confidence (Eqn. 2) from that viewpoint. |vij , v
∗

ij | denotes

degree difference. Indicator function 1() constrains the loss

on approaching vectors that has a nearby groundtruth within

5 degree bound. Here for Lcls we use a two class softmax

loss, while for Lreg we use the smooth L1 loss.

4.3. Operation Network

After getting approaching vectors from graspable points,

we further predict in-plane rotation, approaching distance,

gripper width and grasp confidence, which is important for

operation. Here, grasp confidence have 10 levels (Eqn. 2).

Cylinder Region Transformation Before forwarding

through the operation network, we build a unified represen-

tation for each grasp candidate. Since approaching distance

is relatively less sensitive, we divide it into K bins. For each

given distance dk, we sample points inside the cylinder cen-

tered along the approaching vectors to a fixed number. For

better learning, all the sampled points are transformed into

a new coordinate whose origin is the grasp point and z-axis

11449

is vij. The transformation matrix Oij is calculated as:

Oij = [o1
ij, [0,−vij

(3),vij
(2)]T,vij],

where o
1
ij = [0,−vij

(3),vij
(2)]T × vij,

vij
(k) is the k-th element of vij. After such transformation,

candidate grasp poses has a unified representation and co-

ordinate.

Rotation and Width It has been proved in previous lit-

erature [17] that for predicting in-plane rotation, classifica-

tion could achieve better results than regression. Following

such setting, our rotation network takes the aligned point

cloud as input and predicts classification scores and normal-

ized residuals for each binned rotation, as well as the corre-

sponding grasp width and confidence. It is worth noticing

that since gripper is symmetric, we only predict rotations

ranging from 0 to 180 degree. The objective function for

the network is:

LR(Rij , Sij ,Wij) =

K
∑

d=1

(1

Ncls

∑

ij

Ld
cls(Rij , R

∗

ij)

+λ2
1

Nreg

∑

ij

Ld
reg(Sij , S

∗

ij)

+λ3
1

Nreg

∑

ij

Ld
reg(Wij ,W

∗

ij)
)

,

(6)

where Rij denotes the binned rotation degrees, Sij , Wij and

d denote the grasp confidence scores, gripper widths and

approaching distance respectively. Ld means loss for the

dth binned distance. Here, for Lcls we use sigmoid cross

entropy loss function for multi-class binary classification.

4.4. Tolerance Network

After previous steps, our end-to-end network can already

predict accurate grasp poses. Beyond that, we further pro-

pose a representation called grasp affinity fields(GAFs) to

improve the robustness of our grasp poses prediction. Since

feasible grasp poses are infinite, humans tend to pick grasp

poses that can tolerate larger errors. Inspired by this, our

GAFs learns to predict the tolerance to perturbation for each

grasp.

Given a ground truth grasp pose, we search its neighbors

in the sphere space to see the farthest distance that the grasp

is still robust with grasp score s > 0.5 and set it as the target

for our GAFs. The loss function is written as:

LF (Aij) =
1

Nreg

K
∑

d=1

∑

ij

Ld
reg(Tij , T

∗

ij), (7)

where Tij denotes the maximum perturbation that the grasp

pose can resist.

Object s=1 s=0.5 s=0.1 Object s=1 s=0.5 s=0.1

Banana 98% 67% 21% Apple 97% 65% 16%

Peeler 95% 59% 9% Dragon 96% 60% 9%

Mug 96% 62% 12% Camel 93% 67% 23%

Scissors 89% 61% 5% Power Drill 96% 61% 14%

Lion 98% 68% 16% Black Mouse 98% 64% 13%

Table 2. Summary of real world success rate of grasping given

different grasp score.

4.5. Training and Inference

During training, the whole network is updated in an end-

to-end manner by minimizing the follow objective function:

L = LA({ci}, {sij}) + αLR(Rij , Sij ,Wij) + βLF (Tij)
(8)

During inference, we refine our grasp poses by dividing

them into 10 bins according to their grasp scores and resort

the grasps in each bin according to the perturbation they

can resist predicted by our tolerance network. We divide

the predicted grasps into 10 bins because our labels have 10

different grasp scores. Experiments demonstrate that such

refinement can improve the grasping quality effectively.

5. Experiments

In this section, we first conduct robotic experiments to

demonstrate that our ground-truth annotations can align

well with real-world grasping. Then we benchmark several

representative methods on our dataset and compare them

with our methods in a unified evaluation metric (Sec. 3.4).

Finally, we conduct ablation studies to show the effective-

ness of our network components.

5.1. Ground­Truth Evaluation

To evaluate the quality of our generated grasp poses, we

set up a real robotic experiment. Since we need to project

grasp poses to the camera frame using objects’ 6D poses,

we paste ArUco code on the objects and only label their 6D

poses once to avoid tedious annotation process.

We pick 10 objects from our object set and execute grasp

poses that has different scores. For each setting we ran-

domly choose 100 grasp poses. For robot arm we adopt a

Flexiv Rizon arm and for camera we use the Intel RealSense

435. Table 2 summarizes the success rate of grasping. We

can see that for grasp poses with high score, the success rate

can achieve 0.96 in average. Meanwhile, the success rate is

pretty low for grasp poses with s = 0.1. It indicates that

our generated grasp poses are well aligned with real world

grasping.

5.2. Benchmarking Representative Methods

We benchmark different representative methods on our

dataset and compare them with our method.

11450

Figure 6. Qualitative results of our predicted grasp poses. Scenes are constructed using the RGB-D images taken by cameras. Grasps are

represented by blue lines.

Methods
Seen Unseen Novel

AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GG-CNN[27] 15.48/16.89 21.84/22.47 10.25/11.23 13.26/15.05 18.37/19.76 4.62/6.19 5.52/7.38 5.93/8.78 1.86/1.32

Chu et al. [7] 15.97/17.59 23.66/24.67 10.80/12.74 15.41/17.36 20.21/21.64 7.06/8.86 7.64/8.04 8.69/9.34 2.52/1.76

GPD [41] 22.87/24.38 28.53/30.16 12.84/13.46 21.33/23.18 27.83/28.64 9.64/11.32 8.24/9.58 8.89/10.14 2.67/3.16

Liang et al. [24] 25.96/27.59 33.01/34.21 15.37/17.83 22.68/24.38 29.15/30.84 10.76/12.83 9.23/10.66 9.89/11.24 2.74/3.21

Ours 27.56/29.88 33.43/36.19 16.95/19.31 26.11/27.84 34.18/33.19 14.23/16.62 10.55/11.51 11.25/12.92 3.98/3.56

Table 3. Evaluation for different methods. The table shows the results on data captured by RealSense/Kinect respectively.

For rectangle based method, we adopt two methods [27,

7] with open implementations. For point cloud proposal

method, we adopt [41, 24]. We train these models according

to their original implementations.

For our method, rotation angle is divided into 12 bins

and approaching distance is divided into 4 bins with the

value of 0.01, 0.02, 0.03, 0.04 meter. We set M = 1024
and V = 300. PointNet++ has four set abstraction layers

with the radius of 0.04, 0.1, 0.2, 0.3 in meters and group-

ing size of 64, 32, 16 and 16, by which the point set is

down-sampled to the size of 2048, 1024, 512 and 256 re-

spectively. Then the points are up-sampled by two feature

propagation layers to the size 1024 with 256-dim features.

ApproachNet, OperationNet and ToleranceNet is composed

of MLPs with the size of (256, 302, 302), (128, 128, 36)

and (128, 64, 12) respectively. For the loss function, we set

λ1, λ2, λ3, α, β = 0.5, 1.0, 0.2, 0.5, 0.1.

Our model is implemented with PyTorch and trained

with Adam optimizer [18] on one Nvidia RTX 2080 GPU.

During training, we randomly sample 20k points from each

scene. The initial learning rate is 0.001 and the batch size is

4. The learning rate is decreased to 0.0001 after 60 epochs

and then decreased to 0.00001 after 100 epochs.

We report the results of different methods in Tab. 3. As

we can see, rectangle based method has a lower accuracy

among all of the metrics. It denotes that previous rectangle

based methods might be over-estimated. Our end-to-end

network achieves the state-of-the-art result and outperforms

previous methods by a large margin. We show some quali-

tative results of our predicted grasp poses in Fig. 6.

5.3. Ablation Studies

To evaluate the effectiveness of different components of

our network, we conduct ablation studies on the seen test

set of Kinect subset. First we evaluate whether different

Method AP AP0.8 AP0.4

Full 29.88 36.19 19.31

Replace classification
23.74 33.28 12.15

with regression

Remove
28.53 35.62 16.33

Tolerance Network

Table 4. Ablation studies of our network. See text for more details.

grasp pose representations would affect the results by di-

rectly regressing the direction of the approaching vector and

degree of in-plane rotation. Then we evaluate the effective-

ness of our ToleranceNet by removing it from our inference

pipeline. Results are reported in Tab. 4. We can see that

classification based learning scheme is indeed better than

direct regression. Meanwhile, the drop of performance af-

ter removing the ToleranceNet demonstrates effectiveness

of the grasp affinity fields.

6. Conclusion

In this paper we built a large-scale dataset for cluttered

scene object grasping. Our dataset is orders of magnitude

larger than previous grasping datasets and diverse in ob-

jects, scenes and data sources. It consists of images taken

by real world sensor and has rich and dense annotations.

We demonstrated that our dataset align well with real world

grasping. Meanwhile, we proposed an end-to-end grasp

pose prediction network equipped with a novel representa-

tion of grasp affinity fields. Experiments showed the superi-

ority of our method. Our code and dataset will be released.

Acknowledgment This work is supported in part by the Na-

tional Key R&D Program of China, No. 2017YFA0700800,

National Natural Science Foundation of China under Grants

61772332 and Shanghai Qi Zhi Institute

11451

References

[1] Umar Asif, Jianbin Tang, and Stefan Harrer. Ensemblenet:

Improving grasp detection using an ensemble of convolu-

tional neural networks. In BMVC, page 10, 2018.

[2] Umar Asif, Jianbin Tang, and Stefan Harrer. Graspnet: An

efficient convolutional neural network for real-time grasp de-

tection for low-powered devices. In IJCAI, pages 4875–

4882, 2018.

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. arXiv

preprint arXiv:1803.10091, 2018.

[4] Samarth Brahmbhatt, Ankur Handa, James Hays, and Dieter

Fox. Contactgrasp: Functional multi-finger grasp synthesis

from contact. arXiv preprint arXiv:1904.03754, 2019.

[5] Shehan Caldera, Alexander Rassau, and Douglas Chai. Re-

view of deep learning methods in robotic grasp detection.

Multimodal Technologies and Interaction, 2(3):57, 2018.

[6] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt

Konolige, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M

Dollar. Yale-cmu-berkeley dataset for robotic manipulation

research. The International Journal of Robotics Research,

36(3):261–268, 2017.

[7] Fu-Jen Chu, Ruinian Xu, and Patricio A Vela. Real-world

multiobject, multigrasp detection. IEEE Robotics and Au-

tomation Letters, 3(4):3355–3362, 2018.

[8] Xinke Deng, Yu Xiang, Arsalan Mousavian, Clemens Epp-

ner, Timothy Bretl, and Dieter Fox. Self-supervised 6d ob-

ject pose estimation for robot manipulation. arXiv preprint

arXiv:1909.10159, 2019.

[9] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen.

Jacquard: A large scale dataset for robotic grasp detection.

In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3511–3516. IEEE, 2018.

[10] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and

Yehoshua Y Zeevi. The farthest point strategy for progres-

sive image sampling. IEEE Transactions on Image Process-

ing, 6(9):1305–1315, 1997.

[11] Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov,

Viraj Mehta, Li Fei-Fei, and Silvio Savarese. Learning task-

oriented grasping for tool manipulation from simulated self-

supervision. arXiv preprint arXiv:1806.09266, 2018.

[12] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

9224–9232, 2018.

[13] Di Guo, Fuchun Sun, Huaping Liu, Tao Kong, Bin Fang, and

Ning Xi. A hybrid deep architecture for robotic grasp de-

tection. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 1609–1614. IEEE, 2017.

[14] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-

fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.

Model based training, detection and pose estimation of

texture-less 3d objects in heavily cluttered scenes. In Asian

conference on computer vision, pages 548–562. Springer,

2012.

[15] Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and

Cewu Lu. Pointsift: A sift-like network module for

3d point cloud semantic segmentation. arXiv preprint

arXiv:1807.00652, 2018.

[16] Yun Jiang, Stephen Moseson, and Ashutosh Saxena. Effi-

cient grasping from rgbd images: Learning using a new rect-

angle representation. In 2011 IEEE International Conference

on Robotics and Automation, pages 3304–3311. IEEE, 2011.

[17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan

Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d de-

tection and 6d pose estimation great again. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1521–1529, 2017.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

[19] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In Proceedings of the IEEE International Conference on

Computer Vision, pages 863–872, 2017.

[20] Truc Le and Ye Duan. Pointgrid: A deep network for 3d

shape understanding. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 9204–

9214, 2018.

[21] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning

for detecting robotic grasps. The International Journal of

Robotics Research, 34(4-5):705–724, 2015.

[22] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,

and Deirdre Quillen. Learning hand-eye coordination for

robotic grasping with deep learning and large-scale data col-

lection. The International Journal of Robotics Research,

37(4-5):421–436, 2018.

[23] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in Neural Information Processing Sys-

tems, pages 828–838, 2018.

[24] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner,

Song Tang, Bin Fang, Fuchun Sun, and Jianwei Zhang.

Pointnetgpd: Detecting grasp configurations from point sets.

In 2019 International Conference on Robotics and Automa-

tion (ICRA), pages 3629–3635. IEEE, 2019.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In Eu-

ropean conference on computer vision(ECCV), pages 740–

755. Springer, 2014.

[26] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,

Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken

Goldberg. Dex-net 2.0: Deep learning to plan robust grasps

with synthetic point clouds and analytic grasp metrics. arXiv

preprint arXiv:1703.09312, 2017.

[27] Douglas Morrison, Peter Corke, and Jürgen Leitner. Closing

the loop for robotic grasping: A real-time, generative grasp

synthesis approach. arXiv preprint arXiv:1804.05172, 2018.

[28] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof

graspnet: Variational grasp generation for object manipula-

tion. arXiv preprint arXiv:1905.10520, 2019.

[29] Van-Duc Nguyen. Constructing force-closure grasps. The In-

ternational Journal of Robotics Research, 7(3):3–16, 1988.

11452

[30] Lerrel Pinto and Abhinav Gupta. Supersizing self-

supervision: Learning to grasp from 50k tries and 700 robot

hours. In 2016 IEEE international conference on robotics

and automation (ICRA), pages 3406–3413. IEEE, 2016.

[31] Charles R Qi, Or Litany, Kaiming He, and Leonidas J

Guibas. Deep hough voting for 3d object detection in point

clouds. arXiv preprint arXiv:1904.09664, 2019.

[32] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-

d data. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 918–927, 2018.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classifica-

tion and segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 2017.

[34] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv preprint arXiv:1706.02413, 2017.

[35] Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu,

and Hao Su. S4g: Amodal single-view single-shot se

(3) grasp detection in cluttered scenes. arXiv preprint

arXiv:1910.14218, 2019.

[36] Joseph Redmon and Anelia Angelova. Real-time grasp

detection using convolutional neural networks. In 2015

IEEE International Conference on Robotics and Automation

(ICRA), pages 1316–1322. IEEE, 2015.

[37] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. arXiv preprint arXiv:1812.04244, 2018.

[38] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2530–2539, 2018.

[39] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Octree generating networks: Efficient convolutional archi-

tectures for high-resolution 3d outputs. arXiv preprint

arXiv:1703.09438, 2017.

[40] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3887–3896, 2018.

[41] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert

Platt. Grasp pose detection in point clouds. The International

Journal of Robotics Research, 36(13-14):1455–1473, 2017.

[42] Jacob Varley, Jonathan Weisz, Jared Weiss, and Peter Allen.

Generating multi-fingered robotic grasps via deep learning.

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 4415–4420. IEEE.

[43] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics (TOG), 36(4):72, 2017.

[44] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

[45] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. Posecnn: A convolutional neural network for

6d object pose estimation in cluttered scenes. arXiv preprint

arXiv:1711.00199, 2017.

[46] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4606–4615, 2018.

[47] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 87–102, 2018.

[48] Xinchen Yan, Jasmined Hsu, Mohammad Khansari, Yun-

fei Bai, Arkanath Pathak, Abhinav Gupta, James Davidson,

and Honglak Lee. Learning 6-dof grasping interaction via

deep geometry-aware 3d representations. In 2018 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 1–9. IEEE, 2018.

[49] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 206–215, 2018.

[50] Hanbo Zhang, Xuguang Lan, Site Bai, Xinwen Zhou,

Zhiqiang Tian, and Nanning Zheng. Roi-based robotic grasp

detection for object overlapping scenes. arXiv preprint

arXiv:1808.10313, 2018.

[51] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018.

11453

